
Gary F Baxter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6170068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radical Biology and Medicine, 2021, 166, 33-52.	2.9	28
2	Pre- and postconditioning the heart with hydrogen sulfide (H2S) against ischemia/reperfusion injury in vivo: a systematic review and meta-analysis. Basic Research in Cardiology, 2018, 113, 6.	5.9	44
3	AP39, a mitochondria-targeting hydrogen sulfide (H ₂ S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. British Journal of Pharmacology, 2017, 174, 287-301.	5.4	69
4	Cardioprotective effects of Viscum album L. subsp. album (European misletoe) leaf extracts in myocardial ischemia and reperfusion. Journal of Ethnopharmacology, 2017, 209, 203-209.	4.1	17
5	Natriuretic peptide activation of extracellular regulated kinase 1/2 (ERK1/2) pathway by particulate guanylyl cyclases in GH3 somatolactotropes. Cell and Tissue Research, 2017, 369, 567-578.	2.9	4
6	Pharmacological postconditioning against myocardial infarction with a slow-releasing hydrogen sulfide donor, GYY4137. Pharmacological Research, 2016, 111, 442-451.	7.1	54
7	Nitric oxide treatments as adjuncts to reperfusion in acute myocardial infarction: a systematic review of experimental and clinical studies. Basic Research in Cardiology, 2016, 111, 23.	5.9	58
8	Postconditioning signalling in the heart: mechanisms and translatability. British Journal of Pharmacology, 2015, 172, 1933-1946.	5.4	19
9	Novel Approaches and Opportunities for Cardioprotective Signaling Through 3′,5′-Cyclic Guanosine Monophosphate Manipulation. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 269-282.	2.0	18
10	Natriuretic peptides in animal models of cardiovascular disease. Cardiovascular Endocrinology, 2014, 3, 19-26.	0.8	1
11	Homologous and heterologous desensitization of guanylyl cyclase-B signaling in GH3 somatolactotropes. Cell and Tissue Research, 2014, 355, 425-436.	2.9	5
12	Natriuretic peptides modulate ATP-sensitive K+ channels in rat ventricular cardiomyocytes. Basic Research in Cardiology, 2014, 109, 402.	5.9	18
13	NO-independent stimulation or activation of soluble guanylyl cyclase during early reperfusion limits infarct size. Cardiovascular Research, 2014, 101, 220-228.	3.8	34
14	Interaction of Risk Factors, Comorbidities, and Comedications with Ischemia/Reperfusion Injury and Cardioprotection by Preconditioning, Postconditioning, and Remote Conditioning. Pharmacological Reviews, 2014, 66, 1142-1174.	16.0	521
15	Targeting of soluble guanylyl cyclase limits infarct size in a model of acute myocardial infarction. BMC Pharmacology, 2011, 11, .	0.4	0
16	Nitric oxide/cGMP signalling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Research in Cardiology, 2010, 105, 257-266.	5.9	28
17	Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. Basic Research in Cardiology, 2010, 105, 643-650.	5.9	83
18	Regulation of cardiovascular cell function by hydrogen sulfide (H ₂ S). Cell Biochemistry and Function, 2010, 28, 95-106.	2.9	132

GARY F BAXTER

#	Article	IF	CITATIONS
19	L-Cysteine Stimulates Hydrogen Sulfide Synthesis in Myocardium Associated With Attenuation of Ischemia-Reperfusion Injury. Journal of Cardiovascular Pharmacology and Therapeutics, 2010, 15, 53-59.	2.0	34
20	Postconditioning and protection from reperfusion injury: where do we stand? * Position Paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2010, 87, 406-423.	3.8	447
21	Pharmacological targets revealed by myocardial postconditioning. Current Opinion in Pharmacology, 2009, 9, 177-188.	3.5	33
22	Apelin reduces myocardial reperfusion injury independently of PI3K/Akt and P70S6 kinase. Regulatory Peptides, 2008, 146, 271-277.	1.9	76
23	Evidence for serca and BKCa activation in BNP protection of reperfused myocardium. Journal of Molecular and Cellular Cardiology, 2008, 44, 717.	1.9	3
24	Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2598-H2606.	3.2	103
25	Activation of particulate guanylate cyclase during early reperfusion limits infarct size in the rat isolated heart. Journal of Molecular and Cellular Cardiology, 2007, 42, S209.	1.9	1
26	Interaction of Cardiovascular Risk Factors with Myocardial Ischemia/Reperfusion Injury, Preconditioning, and Postconditioning. Pharmacological Reviews, 2007, 59, 418-458.	16.0	631
27	Attenuated cardioprotective response to bradykinin, but not classical ischaemic preconditioning, in DOCA-salt hypertensive left ventricular hypertrophy. Pharmacological Research, 2007, 55, 42-48.	7.1	31
28	lschemic preconditioning is lost in aging hypertensive rat heart: Independent effects of aging and longstanding hypertension. Experimental Gerontology, 2007, 42, 807-814.	2.8	71
29	Cardioprotective actions of peptide hormones in myocardial ischemia. Heart Failure Reviews, 2007, 12, 279-291.	3.9	67
30	B-type natriuretic peptide at early reperfusion limits infarct size in the rat isolated heart. Basic Research in Cardiology, 2007, 102, 529-541.	5.9	77
31	Activation of the h2s-generating enzyme, cystathionine-γ-lyase, protects against myocardial ischaemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2006, 40, 960.	1.9	0
32	B-type natriuretic peptide limits reperfusion injury via opening of ATP-sensitive potassium channels. Journal of Molecular and Cellular Cardiology, 2006, 40, 967-968.	1.9	1
33	A critical cytoprotective role of endogenous adrenomedullin in acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 2006, 41, 360-363.	1.9	29
34	Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia–reperfusion injury. Basic Research in Cardiology, 2006, 101, 53-60.	5.9	247
35	Adrenomedullin: regulator of systemic and cardiac homeostasis in acute myocardial infarction. , 2005, 105, 95-112.		40
36	Autocrine and paracrine actions of natriuretic peptides in the heart. , 2004, 101, 113-129.		188

GARY F BAXTER

#	Article	IF	CITATIONS
37	Effect of radiofrequency catheter ablation on the biochemical marker ischemia modified albumin. American Journal of Cardiology, 2004, 94, 234-236.	1.6	26
38	The natriuretic peptides. Basic Research in Cardiology, 2004, 99, 71-75.	5.9	93
39	Natriuretic peptides and myocardial ischaemia. Basic Research in Cardiology, 2004, 99, 90-93.	5.9	61
40	Acute Actions of Natriuretic Peptides in Coronary Vasculature and Ischaemic Myocardium. Current Pharmaceutical Design, 2004, 10, 2477-2482.	1.9	11
41	Limitation of Myocardial Reperfusion Injury by AMP579, an Adenosine A1/A2AReceptor Agonist: Role of A2AReceptor and Erk1/2. Cardiovascular Drugs and Therapy, 2003, 17, 415-425.	2.6	48
42	Role of nuclear factor-l̂º B activation in acute ischaemia-reperfusion injury in myocardium. British Journal of Pharmacology, 2003, 138, 894-900.	5.4	49
43	Second window of protection following myocardial preconditioning: an essential role for PI3 kinase and p70S6 kinase. Journal of Molecular and Cellular Cardiology, 2003, 35, 1063-1071.	1.9	88
44	B-type natriuretic peptide limits infarct size in rat isolated hearts via K _{ATP} channel opening. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1592-H1600.	3.2	161
45	Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning?. Cardiovascular Research, 2002, 55, 534-543.	3.8	487
46	The neutrophil as a mediator of myocardial ischemia-reperfusion injury: time to move on. Basic Research in Cardiology, 2002, 97, 268-275.	5.9	108
47	Angiotensin-converting enzyme inhibition enhances a subthreshold stimulus to elicit delayed preconditioning in pig myocardium. Journal of the American College of Cardiology, 2001, 37, 1996-2001.	2.8	39
48	Bradykinin elicits "second window―myocardial protection in rat heart through an NO-dependent mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1458-H1464.	3.2	28
49	Delayed or Second Window Preconditioning Induced by Adenosine A1 Receptor Activation Is Independent of Early Generation of Nitric Oxide or Late Induction of Inducible Nitric Oxide Synthase. Journal of Cardiovascular Pharmacology, 2001, 38, 278-287.	1.9	20
50	Glimepiride, a Novel Sulfonylurea, Does Not Abolish Myocardial Protection Afforded by Either Ischemic Preconditioning or Diazoxide. Circulation, 2001, 103, 3111-3116.	1.6	128
51	Cardioprotective Effects of Transforming Growth Factor-β1 During Early Reoxygenation or Reperfusion Are Mediated by p42/p44 MAPK. Journal of Cardiovascular Pharmacology, 2001, 38, 930-939.	1.9	98
52	Opposing effects on infarction of delta and kappa opioid receptor activation in the isolated rat heart: implications for ischemic preconditioning. Basic Research in Cardiology, 2000, 95, 1-10.	5.9	92
53	The p38 MAPK inhibitor, SB203580, abrogates ischaemic preconditioning in rat heart but timing of administration is critical. Basic Research in Cardiology, 2000, 95, 472-478.	5.9	96
54	Mibefradil, a T-type and L-type calcium channel blocker, limits infarct size through a glibenclamide-sensitive mechanism. Cardiovascular Drugs and Therapy, 1999, 13, 115-122.	2.6	22

GARY F BAXTER

#	Article	IF	CITATIONS
55	Reperfusion Injury Revisited Is There a Role for Growth Factor Signaling in Limiting Lethal Reperfusion Injury?. Trends in Cardiovascular Medicine, 1999, 9, 245-249.	4.9	99
56	Reduction of infarct size in isolated rat heart by CsA and FK506: possible role of phosphatase inhibition. Cardiovascular Drugs and Therapy, 1998, 12, 499-501.	2.6	14
57	Prolonging the Delayed Phase of Myocardial Protection: Repetitive Adenosine A1 Receptor Activation Maintains Rabbit Myocardium in a Preconditioned State 11Dr. Dana is supported by a Junior Research Fellowship, and Dr. Baxter by an Intermediate Fellowship, from the British Heart Foundation, London. Continuing support (Drs. Dana and Baxter) is provided by the Hatter Foundation, London Journal of	2.8	85
58	Myocardial Protection Afforded by Nicorandil and Ischaemic Preconditioning in a Rabbit Infarct Model In Vivo. Journal of Cardiovascular Pharmacology, 1998, 31, 74-79.	1.9	95
59	Ischaemic Preconditioning of Myocardium. Annals of Medicine, 1997, 29, 345-352.	3.8	29
60	Genistein, a Tyrosine Kinase Inhibitor, Blocks the "Second Window of Protection―48 h after Ischemic Preconditioning in the Rabbit. Journal of Molecular and Cellular Cardiology, 1997, 29, 1885-1893.	1.9	78
61	Protein Kinase C is Involved in Resistance to Myocardial Infarction Induced by Heat Stress. Journal of Molecular and Cellular Cardiology, 1997, 29, 3311-3319.	1.9	46
62	Protection against global ischemia in the rabbit isolated heart 24 hours after transient adenosine A1 receptor activation. Cardiovascular Drugs and Therapy, 1997, 11, 83-85.	2.6	13
63	Myocardial ischemic tolerance following heat stress is abolished by ATP-sensitive potassium channel blockade. Cardiovascular Drugs and Therapy, 1997, 11, 679-686.	2.6	46
64	Protection of the myocardium by ischaemic preconditioning: Mechanisms and therapeutic implications. , 1996, 69, 143-151.		34