
Jie Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6169926/publications.pdf Version: 2024-02-01

ILE CHEN

#	Article	IF	CITATIONS
1	Phosphatidic Acid-Mediated Mitogenic Activation of mTOR Signaling. Science, 2001, 294, 1942-1945.	12.6	950
2	Control of p70 S6 kinase by kinase activity of FRAP in vivo. Nature, 1995, 377, 441-446.	27.8	665
3	Regulation of Peroxisome Proliferator-Activated Receptor-Â Activity by Mammalian Target of Rapamycin and Amino Acids in Adipogenesis. Diabetes, 2004, 53, 2748-2756.	0.6	403
4	Probing cellular protein complexes using single-molecule pull-down. Nature, 2011, 473, 484-488.	27.8	375
5	Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nature Medicine, 2012, 18, 934-942.	30.7	285
6	TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell, 1995, 82, 121-130.	28.9	283
7	IGF-II is regulated by microRNA-125b in skeletal myogenesis. Journal of Cell Biology, 2011, 192, 69-81.	5.2	213
8	mTOR supports long-term self-renewal and suppresses mesoderm and endoderm activities of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7840-7845.	7.1	193
9	Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. Journal of Cell Biology, 2010, 189, 1157-1169.	5.2	183
10	Chapter 21 Interleukinâ€6 and Insulin Resistance. Vitamins and Hormones, 2009, 80, 613-633.	1.7	178
11	α4 Associates with Protein Phosphatases 2A, 4, and 6. Biochemical and Biophysical Research Communications, 1998, 247, 827-832.	2.1	168
12	Duration of Rapamycin Treatment Has Differential Effects on Metabolism in Mice. Cell Metabolism, 2013, 17, 456-462.	16.2	165
13	Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization. Nature Cell Biology, 2009, 11, 286-294.	10.3	160
14	PLD1 Regulates mTOR Signaling and Mediates Cdc42 Activation of S6K1. Current Biology, 2003, 13, 2037-2044.	3.9	156
15	IGF-II transcription in skeletal myogenesis is controlled by mTOR and nutrients. Journal of Cell Biology, 2003, 163, 931-936.	5.2	152
16	Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO Journal, 2002, 21, 4070-4080.	7.8	146
17	Class III PI-3-kinase activates phospholipase D in an amino acid–sensing mTORC1 pathway. Journal of Cell Biology, 2011, 195, 435-447.	5.2	146
18	MicroRNAs in skeletal myogenesis. Cell Cycle, 2011, 10, 441-448.	2.6	137

JIE CHEN

#	Article	IF	CITATIONS
19	The Mammalian Target of Rapamycin Regulates C2C12 Myogenesis via a Kinase-independent Mechanism. Journal of Biological Chemistry, 2001, 276, 36079-36082.	3.4	134
20	(+)-Discodermolide binds to microtubules in stoichiometric ratio to tubulin dimers, blocks taxol binding and results in mitotic arrest. Chemistry and Biology, 1996, 3, 287-293.	6.0	133
21	The FKBP12-Rapamycin-binding Domain Is Required for FKBP12-Rapamycin-associated Protein Kinase Activity and G1 Progression. Journal of Biological Chemistry, 1999, 274, 4266-4272.	3.4	130
22	EPRS is a critical mTORC1–S6K1 effector that influences adiposity in mice. Nature, 2017, 542, 357-361.	27.8	130
23	Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nature Communications, 2014, 5, 3966.	12.8	124
24	Regulation of Interleukin-6-induced Hepatic Insulin Resistance by Mammalian Target of Rapamycin through the STAT3-SOCS3 Pathway. Journal of Biological Chemistry, 2008, 283, 708-715.	3.4	122
25	Phosphatidic Acid Activates Mammalian Target of Rapamycin Complex 1 (mTORC1) Kinase by Displacing FK506 Binding Protein 38 (FKBP38) and Exerting an Allosteric Effect. Journal of Biological Chemistry, 2011, 286, 29568-29574.	3.4	115
26	mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms. American Journal of Physiology - Cell Physiology, 2009, 297, C1434-C1444.	4.6	112
27	A novel pathway regulating the mammalian target of rapamycin (mTOR) signaling. Biochemical Pharmacology, 2002, 64, 1071-1077.	4.4	106
28	A Phosphatidylinositol 3-Kinase/Protein Kinase B-independent Activation of Mammalian Target of Rapamycin Signaling Is Sufficient to Induce Skeletal Muscle Hypertrophy. Molecular Biology of the Cell, 2010, 21, 3258-3268.	2.1	102
29	Mammalian Target of Rapamycin (mTOR) Signaling Network in Skeletal Myogenesis. Journal of Biological Chemistry, 2012, 287, 43928-43935.	3.4	102
30	Glycerolipid signals alter mTOR complex 2 (mTORC2) to diminish insulin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1667-1672.	7.1	91
31	Rapid Mitogenic Regulation of the mTORC1 Inhibitor, DEPTOR, by Phosphatidic Acid. Molecular Cell, 2015, 58, 549-556.	9.7	84
32	Regulation of Ribosomal S6 Kinase 2 by Mammalian Target of Rapamycin. Journal of Biological Chemistry, 2002, 277, 31423-31429.	3.4	83
33	Mammalian Target of Rapamycin (mTOR) Signaling Is Required for a Late-stage Fusion Process during Skeletal Myotube Maturation. Journal of Biological Chemistry, 2005, 280, 32009-32017.	3.4	79
34	mTOR signaling: PLD takes center stage. Cell Cycle, 2008, 7, 3118-3123.	2.6	76
35	Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Molecular Biology of the Cell, 2013, 24, 3369-3380.	2.1	75
36	Signal Transducer and Activator of Transcription 3 (STAT3) Mediates Amino Acid Inhibition of Insulin Signaling through Serine 727 Phosphorylation. Journal of Biological Chemistry, 2009, 284, 35425-35432.	3.4	73

JIE CHEN

#	Article	IF	CITATIONS
37	Leucyl-tRNA Synthetase Activates Vps34 in Amino Acid-Sensing mTORC1 Signaling. Cell Reports, 2016, 16, 1510-1517.	6.4	73
38	A Nuclear Transport Signal in Mammalian Target of Rapamycin Is Critical for Its Cytoplasmic Signaling to S6 Kinase 1. Journal of Biological Chemistry, 2006, 281, 7357-7363.	3.4	71
39	Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1. Experimental Cell Research, 2005, 309, 211-219.	2.6	69
40	Subunit dissociation affects DNA binding in a dimeric lac repressor produced by C-terminal deletion. Biochemistry, 1994, 33, 8728-8735.	2.5	61
41	PLD regulates myoblast differentiation through the mTOR-IGF2 pathway. Journal of Cell Science, 2008, 121, 282-289.	2.0	61
42	Helicobacter pylori Infection Modulates Host Cell Metabolism through VacA-Dependent Inhibition of mTORC1. Cell Host and Microbe, 2018, 23, 583-593.e8.	11.0	54
43	Forkhead Box Protein O1 Negatively Regulates Skeletal Myocyte Differentiation through Degradation of Mammalian Target of Rapamycin Pathway Components. Endocrinology, 2008, 149, 1407-1414.	2.8	53
44	Stoichiometry and assembly of mTOR complexes revealed by single-molecule pulldown. Proceedings of the United States of America, 2014, 111, 17833-17838.	7.1	51
45	Mutually inhibitory Ras-PI(3,4)P ₂ feedback loops mediate cell migration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9125-E9134.	7.1	50
46	Lanthionine synthetase C–like protein 2 (LanCL2) is a novel regulator of Akt. Molecular Biology of the Cell, 2014, 25, 3954-3961.	2.1	46
47	To Grow or Not to Grow: TOR and SnRK2 Coordinate Growth and Stress Response in Arabidopsis. Molecular Cell, 2018, 69, 3-4.	9.7	44
48	MicroRNA-146b Promotes Myogenic Differentiation and Modulates Multiple Gene Targets in Muscle Cells. PLoS ONE, 2014, 9, e100657.	2.5	42
49	Distinct amino acid–sensing mTOR pathways regulate skeletal myogenesis. Molecular Biology of the Cell, 2013, 24, 3754-3763.	2.1	40
50	Effects of rapamycin on growth hormone receptor knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1495-E1503.	7.1	40
51	XPLN is an endogenous inhibitor of mTORC2. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15979-15984.	7.1	38
52	FRAP-Dependent Serine Phosphorylation of IRS-1 Inhibits IRS-1 Tyrosine Phosphorylation. Biochemical and Biophysical Research Communications, 2001, 280, 776-781.	2.1	37
53	Raptor and Rheb Negatively Regulate Skeletal Myogenesis through Suppression of Insulin Receptor Substrate 1 (IRS1). Journal of Biological Chemistry, 2011, 286, 35675-35682.	3.4	36
54	Mechanistic target of rapamycin controls homeostasis of adipogenesis. Journal of Lipid Research, 2013, 54, 2166-2173.	4.2	34

Jie Chen

#	Article	IF	CITATIONS
55	LanCLs add glutathione to dehydroamino acids generated at phosphorylated sites in the proteome. Cell, 2021, 184, 2680-2695.e26.	28.9	34
56	Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins. Nature Communications, 2021, 12, 4339.	12.8	27
57	Construction of A Dimeric Repressor: Dissection of Subunit Interfaces in Lac Repressor. Biochemistry, 1994, 33, 1234-1241.	2.5	26
58	Activation of mTOR signaling by novel fluoromethylene phosphonate analogues of phosphatidic acid. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1461-1464.	2.2	24
59	Lack of muscle mTOR kinase activity causes early onset myopathy and compromises wholeâ€body homeostasis. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 35-53.	7.3	24
60	ARHGEF3 Regulates Skeletal Muscle Regeneration and Strength through Autophagy. Cell Reports, 2021, 34, 108594.	6.4	24
61	Nontranslational function of leucyl-tRNA synthetase regulates myogenic differentiation and skeletal muscle regeneration. Journal of Clinical Investigation, 2019, 129, 2088-2093.	8.2	22
62	RNAi Screen Reveals Potentially Novel Roles of Cytokines in Myoblast Differentiation. PLoS ONE, 2013, 8, e68068.	2.5	22
63	mTORC1 mediates fiber type-specific regulation of protein synthesis and muscle size during denervation. Cell Death Discovery, 2021, 7, 74.	4.7	20
64	LanCL proteins are not Involved in Lanthionine Synthesis in Mammals. Scientific Reports, 2017, 7, 40980.	3.3	20
65	Cxcl14 depletion accelerates skeletal myogenesis by promoting cell cycle withdrawal. Npj Regenerative Medicine, 2017, 2, .	5.2	18
66	T41 mutation in lac repressor is Tyr282→Asp. Gene, 1992, 111, 145-146.	2.2	16
67	Single-Molecule Analysis of Lipid–Protein Interactions in Crude Cell Lysates. Analytical Chemistry, 2016, 88, 4269-4276.	6.5	16
68	Muscle cellâ€derived cytokines in skeletal muscle regeneration. FEBS Journal, 2022, 289, 6463-6483.	4.7	14
69	Flt3L is a novel regulator of skeletal myogenesis. Journal of Cell Science, 2013, 126, 3370-9.	2.0	13
70	Amino acid-sensing mTOR signaling is involved in modulation of lipolysis by chronic insulin treatment in adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E862-E868.	3.5	9
71	α7β1 Integrin regulation of gene transcription in skeletal muscle following an acute bout of eccentric exercise. American Journal of Physiology - Cell Physiology, 2017, 312, C638-C650.	4.6	9
72	Autophagy-dependent regulation of skeletal muscle regeneration and strength by a RHOGEF. Autophagy, 2021, 17, 1044-1045.	9.1	8

Jie Chen

#	Article	IF	CITATIONS
73	A nonâ€translational role of threonylâ€tRNA synthetase in regulating JNK signaling during myogenic differentiation. FASEB Journal, 2021, 35, e21948.	0.5	5
74	Protein Modulators Made to Order. Chemistry and Biology, 2002, 9, 543-544.	6.0	4
75	Lanthionine synthetase C-like protein 2 (LanCL2) is important for adipogenic differentiation. Journal of Lipid Research, 2018, 59, 1433-1445.	4.2	4
76	Lentivirus-Mediated RNAi in Skeletal Myogenesis. Methods in Molecular Biology, 2019, 1889, 95-110.	0.9	4
77	Aging Does Not Exacerbate Muscle Loss During Denervation and Lends Unique Muscle-Specific Atrophy Resistance With Akt Activation. Frontiers in Physiology, 2021, 12, 779547.	2.8	3
78	Muscle-derived TRAIL negatively regulates myogenic differentiation. Experimental Cell Research, 2020, 394, 112165.	2.6	2
79	Amino Acid-Sensing mTOR Signaling. Oxidative Stress and Disease, 2005, , .	0.3	0
80	Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. Journal of Experimental Medicine, 2010, 207, i21-i21.	8.5	0
81	Flt3L is a novel regulator of skeletal myogenesis. Development (Cambridge), 2013, 140, e1707-e1707.	2.5	0
82	ARHGEF3 Regulates Skeletal Muscle Regeneration and Strength Through Autophagy. SSRN Electronic Journal, 0, , .	0.4	0