PÃ_il Riba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6169500/publications.pdf Version: 2024-02-01

DÃ: DIRA

#	Article	IF	CITATIONS
1	Serotonin and epilepsy. Journal of Neurochemistry, 2007, 100, 857-873.	3.9	283
2	Peripheral versus Central Antinociceptive Actions of 6-Amino Acid-Substituted Derivatives of 14-O-Methyloxymorphone in Acute and Inflammatory Pain in the Rat. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 609-618.	2.5	71
3	DAMGO and 6β-glycine substituted 14-O-methyloxymorphone but not morphine show peripheral, preemptive antinociception after systemic administration in a mouse visceral pain model and high intrinsic efficacy in the isolated rat vas deferens. Brain Research Bulletin, 2007, 74, 369-375.	3.0	41
4	Headacheâ€ŧype adverse effects of NO donors: vasodilation and beyond. British Journal of Pharmacology, 2010, 160, 20-35.	5.4	41
5	Morphine Tolerance in Spinal Cord Is Due to Interaction between μ- and δ-Receptors. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 265-272.	2.5	39
6	[Dmt¹]DALDA is Highly Selective and Potent at μ Opioid Receptors, but is not Cross-Tolerant with Systemic Morphine. Current Medicinal Chemistry, 2002, 9, 31-39.	2.4	31
7	Norfluoxetine and fluoxetine have similar anticonvulsant and Ca2+ channel blocking potencies. Brain Research Bulletin, 2005, 67, 126-132.	3.0	31
8	In vitro opioid activity profiles of 6-amino acid substituted derivatives of 14-O-methyloxymorphone. European Journal of Pharmacology, 2004, 483, 301-308.	3.5	30
9	The central versus peripheral antinociceptive effects of μ-opioid receptor agonists in the new model of rat visceral pain. Brain Research Bulletin, 2012, 87, 238-243.	3.0	28
10	The Peripheral Versus Central Antinociception of a Novel Opioid Agonist: Acute Inflammatory Pain in Rats. Neurochemical Research, 2018, 43, 1250-1257.	3.3	28
11	Peri, pre and postnatal morphine exposure: exposure-induced effects and sex differences in the behavioural consequences in rat offspring. Behavioural Pharmacology, 2010, 21, 58-68.	1.7	26
12	New Morphine Analogs Produce Peripheral Antinociception within a Certain Dose Range of Their Systemic Administration. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 171-181.	2.5	23
13	Characterization of phenolic compounds and antinociceptive activity of Sempervivum tectorum L. leaf juice. Journal of Pharmaceutical and Biomedical Analysis, 2012, 70, 143-150.	2.8	20
14	A new potent analgesic agent with reduced liability to produce morphine tolerance. Brain Research Bulletin, 2015, 117, 32-38.	3.0	20
15	Peripheral antinociceptive efficacy and potency of a novel opioid compound 14- O -MeM6SU in comparison to known peptide and non-peptide opioid agonists in a rat model of inflammatory pain. European Journal of Pharmacology, 2013, 713, 54-57.	3.5	19
16	Efficacy-Based Perspective to Overcome Reduced Opioid Analgesia of Advanced Painful Diabetic Neuropathy in Rats. Frontiers in Pharmacology, 2019, 10, 347.	3.5	17
17	On the Role of Peripheral Sensory and Gut Mu Opioid Receptors: Peripheral Analgesia and Tolerance. Molecules, 2020, 25, 2473.	3.8	16
18	Alterations in prodynorphin gene expression and dynorphin levels in different brain regions after chronic administration of 14-methoxymetopon and oxycodone-6-oxime. Brain Research Bulletin, 2006, 70, 233-239.	3.0	15

PÃil Riba

#	Article	IF	CITATIONS
19	Novel approach to demonstrate high efficacy of μ opioids in the rat vas deferens: A simple model of predictive value. Brain Research Bulletin, 2010, 81, 178-184.	3.0	15
20	Does the effect of morphine challenge change on maternal behaviour of dams chronically treated with morphine during gestation and further on during lactation?. Pharmacology Biochemistry and Behavior, 2010, 95, 367-374.	2.9	13
21	Spinal interaction between the highly selective μ agonist DAMGO and several δ opioid receptor ligands in naive and morphine-tolerant mice. Brain Research Bulletin, 2013, 90, 66-71.	3.0	13
22	Pharmacological Evidence on Augmented Antiallodynia Following Systemic Co-Treatment with GlyT-1 and GlyT-2 Inhibitors in Rat Neuropathic Pain Model. International Journal of Molecular Sciences, 2021, 22, 2479.	4.1	12
23	Methylglyoxal and cell viability. International Journal of Biochemistry & Cell Biology, 1994, 26, 987-990.	0.5	11
24	Synthesis and Pharmacological Activities of 6-Glycine Substituted 14-Phenylpropoxymorphinans, a Novel Class of Opioids with High Opioid Receptor Affinities and Antinociceptive Potenciesâ€. Journal of Medicinal Chemistry, 2011, 54, 980-988.	6.4	11
25	Comparisons of In Vivo and In Vitro Opioid Effects of Newly Synthesized 14-Methoxycodeine-6-O-sulfate and Codeine-6-O-sulfate. Molecules, 2020, 25, 1370.	3.8	11
26	14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity. European Journal of Pharmacology, 2017, 814, 264-273.	3.5	9
27	Effects of opioid agonist and antagonist in dams exposed to morphine during the perinatal period. Brain Research Bulletin, 2011, 84, 53-60.	3.0	8
28	Functionalization of the Carbonyl Group in Position 6 of Morphinan-6-ones. Development of Novel 6-Amino and 6-Guanidino Substituted 14-Alkoxymorphinans. Current Pharmaceutical Design, 2014, 19, 7391-7399.	1.9	8
29	Shedding Light on the Pharmacological Interactions between μ-Opioid Analgesics and Angiotensin Receptor Modulators: A New Option for Treating Chronic Pain. Molecules, 2021, 26, 6168.	3.8	7
30	Similarity and dissimilarity in antinociceptive effects of dipeptidyl-peptidase 4 inhibitors, Diprotin A and vildagliptin in rat inflammatory pain models following spinal administration. Brain Research Bulletin, 2019, 147, 78-85.	3.0	6
31	The effect of A23187 on glucose production from methylglyoxal and pyruvate in isolated murine hepatocytes. International Journal of Biochemistry & Cell Biology, 1992, 24, 411-414.	0.5	5
32	New opioid receptor antagonist: Naltrexone-14-O-sulfate synthesis and pharmacology. European Journal of Pharmacology, 2017, 809, 111-121.	3.5	5
33	Gluconeogenic precursors stimulate acetone metabolism in isolated murine hepatocytes. International Journal of Biochemistry and Cell Biology, 1996, 28, 705-709.	2.8	3
34	Morphine tolerance in mice is independent of polymorphisms in opioid receptor sequences. Brain Research Bulletin, 2001, 55, 59-63.	3.0	3
35	Gluconeogenesis from methylglyoxal in isolated murine hepatocytes. Does an alternative pathway exist in which pyruvate is not an intermediate?. International Journal of Biochemistry & Cell Biology, 1992, 24, 1721-1724.	0.5	2
36	Effects of structural modifications of N-CPM-normorphine derivatives on agonist and antagonist activities in isolated organs. Acta Biologica Hungarica, 2003, 54, 177-181.	0.7	0