
Vinai Chittezham Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6169307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mucin 5AC Serves as the Nexus for β-Catenin/c-Myc Interplay to Promote Glutamine Dependency During Pancreatic Cancer Chemoresistance. Gastroenterology, 2022, 162, 253-268.e13.	0.6	30
2	The Staphylococcus aureus CidA and LrgA Proteins Are Functional Holins Involved in the Transport of By-Products of Carbohydrate Metabolism. MBio, 2022, 13, e0282721.	1.8	9
3	Bacterial Nitric Oxide Synthase Effectively Mitigates Flavohemoglobin-Mediated Superoxide Production to Enhance Fitness. Free Radical Biology and Medicine, 2022, 180, s100.	1.3	Ο
4	Catabolic Ornithine Carbamoyltransferase Activity Facilitates Growth of Staphylococcus aureus in Defined Medium Lacking Glucose and Arginine. MBio, 2022, 13, e0039522.	1.8	9
5	Interplay of CodY and CcpA in Regulating Central Metabolism and Biofilm Formation in Staphylococcus aureus. Journal of Bacteriology, 2022, 204, .	1.0	9
6	Accumulation of Succinyl Coenzyme A Perturbs the Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA) Succinylome and Is Associated with Increased Susceptibility to Beta-Lactam Antibiotics. MBio, 2021, 12, e0053021.	1.8	16
7	Staphylococcal ClpXP protease targets the cellular antioxidant system to eliminate fitness-compromised cells in stationary phase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
8	Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nature Microbiology, 2020, 5, 1271-1284.	5.9	102
9	Staphylococcus aureus ATP Synthase Promotes Biofilm Persistence by Influencing Innate Immunity. MBio, 2020, 11, .	1.8	25
10	An integrated computational and experimental study to investigate Staphylococcus aureus metabolism. Npj Systems Biology and Applications, 2020, 6, 3.	1.4	12
11	Identification of the main glutamine and glutamate transporters in <i>Staphylococcus aureus</i> and their impact on câ€diâ€AMP production. Molecular Microbiology, 2020, 113, 1085-1100.	1.2	27
12	CidR and CcpA Synergistically Regulate Staphylococcus aureus <i>cidABC</i> Expression. Journal of Bacteriology, 2019, 201, .	1.0	14
13	Dual Gene Expression Analysis Identifies Factors Associated with Staphylococcus aureus Virulence in Diabetic Mice. Infection and Immunity, 2019, 87, .	1.0	22
14	Urease is an essential component of the acid response network of Staphylococcus aureus and is required for a persistent murine kidney infection. PLoS Pathogens, 2019, 15, e1007538.	2.1	82
15	Emerging Roles of Nitric Oxide Synthase in Bacterial Physiology. Advances in Microbial Physiology, 2018, 72, 147-191.	1.0	11
16	The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Scientific Reports, 2017, 7, 11739.	1.6	53
17	Nitrite Derived from Endogenous Bacterial Nitric Oxide Synthase Activity Promotes Aerobic Respiration. MBio, 2017, 8, .	1.8	31
18	Take my breath away. ELife, 2017, 6, .	2.8	4

#	Article	IF	CITATIONS
19	The LysRâ€type transcriptional regulator, CidR, regulates stationary phase cell death in <i>Staphylococcus aureus</i> . Molecular Microbiology, 2016, 101, 942-953.	1.2	29
20	Resistance to Acute Macrophage Killing Promotes Airway Fitness of Prevalent Community-Acquired <i>Staphylococcus aureus</i> Strains. Journal of Immunology, 2016, 196, 4196-4203.	0.4	18
21	SrrAB Modulates Staphylococcus aureus Cell Death through Regulation of <i>cidABC</i> Transcription. Journal of Bacteriology, 2016, 198, 1114-1122.	1.0	29
22	Potassium Uptake Modulates Staphylococcus aureus Metabolism. MSphere, 2016, 1, .	1.3	22
23	Redox Imbalance Underlies the Fitness Defect Associated with Inactivation of the Pta-AckA Pathway in <i>Staphylococcus aureus</i> . Journal of Proteome Research, 2016, 15, 1205-1212.	1.8	26
24	Electron Paramagnetic Resonance (EPR) Spectroscopy to Detect Reactive Oxygen Species in Staphylococcus aureus. Bio-protocol, 2015, 5, .	0.2	8
25	A Central Role for Carbon-Overflow Pathways in the Modulation of Bacterial Cell Death. PLoS Pathogens, 2014, 10, e1004205.	2.1	99
26	Arginine Deiminase in Staphylococcus epidermidis Functions To Augment Biofilm Maturation through pH Homeostasis. Journal of Bacteriology, 2014, 196, 2277-2289.	1.0	82
27	Transformation of Human Cathelicidin LL-37 into Selective, Stable, and Potent Antimicrobial Compounds. ACS Chemical Biology, 2014, 9, 1997-2002.	1.6	110
28	A Dysfunctional Tricarboxylic Acid Cycle Enhances Fitness of Staphylococcus epidermidis During β-Lactam Stress. MBio, 2013, 4, .	1.8	48
29	Inactivation of the Pta-AckA Pathway Causes Cell Death in Staphylococcus aureus. Journal of Bacteriology, 2013, 195, 3035-3044.	1.0	68
30	Decoding the Functional Roles of Cationic Side Chains of the Major Antimicrobial Region of Human Cathelicidin LL-37. Antimicrobial Agents and Chemotherapy, 2012, 56, 845-856.	1.4	88
31	The NsrR regulon in nitrosative stress resistance of <i>Salmonella enterica</i> serovar Typhimurium. Molecular Microbiology, 2012, 85, 1179-1193.	1.2	80
32	Multiple Targets of Nitric Oxide in the Tricarboxylic Acid Cycle of Salmonella enterica Serovar Typhimurium. Cell Host and Microbe, 2011, 10, 33-43.	5.1	112
33	Gelatinase Contributes to the Pathogenesis of Endocarditis Caused by <i>Enterococcus faecalis</i> . Infection and Immunity, 2010, 78, 4936-4943.	1.0	147
34	<i>Enterococcus faecalis</i> Capsular Polysaccharide Serotypes C and D and Their Contributions to Host Innate Immune Evasion. Infection and Immunity, 2009, 77, 5551-5557.	1.0	76
35	Capsular Polysaccharide Production in <i>Enterococcus faecalis</i> and Contribution of CpsF to Capsule Serospecificity. Journal of Bacteriology, 2009, 191, 6203-6210.	1.0	136
36	A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of <i>Enterococcus faecalis</i> . Molecular Microbiology, 2009, 72, 1022-1036.	1.2	161

#	Article	IF	CITATIONS
37	<i>Enterococcus faecalis</i> with the gelatinase phenotype regulated by the <i>fsr</i> operon and with biofilmâ€forming capacity are common in the agricultural environment. Environmental Microbiology, 2009, 11, 1540-1547.	1.8	37
38	Suicide and Fratricide in Bacterial Biofilms. International Journal of Artificial Organs, 2009, 32, 537-544.	0.7	42
39	Regulation of Autolysis-Dependent Extracellular DNA Release by <i>Enterococcus faecalis</i> Extracellular Proteases Influences Biofilm Development. Journal of Bacteriology, 2008, 190, 5690-5698.	1.0	255
40	Full Activation of <i>Enterococcus faecalis</i> Gelatinase by a C-Terminal Proteolytic Cleavage. Journal of Bacteriology, 2007, 189, 8835-8843.	1.0	39