## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6168622/publications.pdf Version: 2024-02-01



LOZEE GECZ

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nature Genetics, 2014, 46, 1063-1071.                                                       | 9.4 | 583       |
| 2  | Duplication of the MECP2 Region Is a Frequent Cause of Severe Mental Retardation and Progressive Neurological Symptoms in Males. American Journal of Human Genetics, 2005, 77, 442-453.               | 2.6 | 550       |
| 3  | A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nature<br>Genetics, 2010, 42, 203-209.                                                                     | 9.4 | 539       |
| 4  | A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation.<br>Nature Genetics, 2009, 41, 535-543.                                                              | 9.4 | 528       |
| 5  | Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nature Genetics, 2017, 49, 515-526.                                         | 9.4 | 443       |
| 6  | Mutations of CDKL5 Cause a Severe Neurodevelopmental Disorder with Infantile Spasms and Mental<br>Retardation. American Journal of Human Genetics, 2004, 75, 1079-1093.                               | 2.6 | 414       |
| 7  | X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nature Genetics, 2008, 40, 776-781.                                                                       | 9.4 | 397       |
| 8  | Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nature<br>Genetics, 2002, 30, 441-445.                                                                  | 9.4 | 396       |
| 9  | Mutations in the JARID1C Gene, Which Is Involved in Transcriptional Regulation and Chromatin<br>Remodeling, Cause X-Linked Mental Retardation. American Journal of Human Genetics, 2005, 76, 227-236. | 2.6 | 349       |
| 10 | Identification of the gene FMR2, associated with FRAXE mental retardation. Nature Genetics, 1996, 13, 105-108.                                                                                        | 9.4 | 303       |
| 11 | A novel X-linked trichothiodystrophy associated with a nonsense mutation in RNF113A. Journal of Medical Genetics, 2015, 52, 269-274.                                                                  | 1.5 | 302       |
| 12 | Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nature Genetics, 2013, 45, 546-551.                                                                                             | 9.4 | 301       |
| 13 | Cerebral palsy: causes, pathways, and the role of genetic variants. American Journal of Obstetrics and<br>Gynecology, 2015, 213, 779-788.                                                             | 0.7 | 290       |
| 14 | PHF6 mutations in T-cell acute lymphoblastic leukemia. Nature Genetics, 2010, 42, 338-342.                                                                                                            | 9.4 | 282       |
| 15 | Identification of a MicroRNA that Activates Gene Expression by Repressing Nonsense-Mediated RNA<br>Decay. Molecular Cell, 2011, 42, 500-510.                                                          | 4.5 | 267       |
| 16 | Disruption of the Serine/Threonine Kinase 9 Gene Causes Severe X-Linked Infantile Spasms and Mental<br>Retardation. American Journal of Human Genetics, 2003, 72, 1401-1411.                          | 2.6 | 265       |
| 17 | Mutations in the X-Linked Cyclin-Dependent Kinase–Like 5 (CDKL5/STK9) Gene Are Associated with Severe<br>Neurodevelopmental Retardation. American Journal of Human Genetics, 2004, 75, 1149-1154.     | 2.6 | 264       |
| 18 | ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Human Molecular Genetics, 2002, 11, 981-991.                                   | 1.4 | 248       |

| #  | Article                                                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | De Novo Mutations in SLC1A2 and CACNA1A Are Important Causes of Epileptic Encephalopathies.<br>American Journal of Human Genetics, 2016, 99, 287-298.                                                                                                                                                       | 2.6  | 247       |
| 20 | Common genetic variants contribute to risk of rare severe neurodevelopmental disorders. Nature, 2018, 562, 268-271.                                                                                                                                                                                         | 13.7 | 246       |
| 21 | X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes.<br>Molecular Psychiatry, 2016, 21, 133-148.                                                                                                                                                             | 4.1  | 243       |
| 22 | Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biology, 2016, 17, 243.                                                                                                                                                                | 3.8  | 241       |
| 23 | PRRT2 Mutations Cause Benign Familial Infantile Epilepsy and Infantile Convulsions with<br>Choreoathetosis Syndrome. American Journal of Human Genetics, 2012, 90, 152-160.                                                                                                                                 | 2.6  | 234       |
| 24 | Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling. American Journal of Human Genetics, 2015, 97, 343-352.                                                                                                                          | 2.6  | 230       |
| 25 | Mutations in UPF3B, a member of the nonsense-mediated mRNA decay complex, cause syndromic and nonsyndromic mental retardation. Nature Genetics, 2007, 39, 1127-1133.                                                                                                                                        | 9.4  | 228       |
| 26 | Mutations in the Small GTPase Gene RAB39B Are Responsible for X-linked Mental Retardation<br>Associated with Autism, Epilepsy, and Macrocephaly. American Journal of Human Genetics, 2010, 86,<br>185-195.                                                                                                  | 2.6  | 220       |
| 27 | SLC9A6 Mutations Cause X-Linked Mental Retardation, Microcephaly, Epilepsy, and Ataxia, a Phenotype<br>Mimicking Angelman Syndrome. American Journal of Human Genetics, 2008, 82, 1003-1010.                                                                                                                | 2.6  | 209       |
| 28 | COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Molecular Biology of the Cell, 2015, 26, 91-103.                                                                                                                                                  | 0.9  | 200       |
| 29 | Mutations in CUL4B, Which Encodes a Ubiquitin E3 Ligase Subunit, Cause an X-linked Mental<br>Retardation Syndrome Associated with Aggressive Outbursts, Seizures, Relative Macrocephaly,<br>Central Obesity, Hypogonadism, Pes Cavus, and Tremor. American Journal of Human Genetics, 2007, 80,<br>345-352. | 2.6  | 197       |
| 30 | Mutations in mammalian target of rapamycin regulator <i>DEPDC5</i> cause focal epilepsy with brain malformations. Annals of Neurology, 2014, 75, 782-787.                                                                                                                                                   | 2.8  | 193       |
| 31 | Mutations in PHF6 are associated with Börjeson–Forssman–Lehmann syndrome. Nature Genetics, 2002,<br>32, 661-665.                                                                                                                                                                                            | 9.4  | 192       |
| 32 | The genetic landscape of intellectual disability arising from chromosome X. Trends in Genetics, 2009, 25, 308-316.                                                                                                                                                                                          | 2.9  | 190       |
| 33 | Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nature Genetics,<br>1999, 22, 400-404.                                                                                                                                                                               | 9.4  | 188       |
| 34 | Submicroscopic Duplications of the Hydroxysteroid Dehydrogenase HSD17B10 and the E3 Ubiquitin<br>Ligase HUWE1 Are Associated with Mental Retardation. American Journal of Human Genetics, 2008, 82,<br>432-443.                                                                                             | 2.6  | 187       |
| 35 | Disruption at the <i>PTCHD1</i> Locus on Xp22.11 in Autism Spectrum Disorder and Intellectual Disability. Science Translational Medicine, 2010, 2, 49ra68.                                                                                                                                                  | 5.8  | 178       |
| 36 | Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Molecular<br>Psychiatry, 2015, 20, 176-182.                                                                                                                                                                          | 4.1  | 178       |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Epilepsy and mental retardation limited to females: an under-recognized disorder. Brain, 2008, 131, 918-927.                                                                                                    | 3.7 | 172       |
| 38 | Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42<br>Mendelian Neurodevelopmental Disorders. American Journal of Human Genetics, 2020, 106, 356-370.                   | 2.6 | 171       |
| 39 | Infantile spasms, dystonia, and other X-linked phenotypes caused by mutations in Aristaless related homeobox gene, ARX. Brain and Development, 2002, 24, 266-268.                                               | 0.6 | 170       |
| 40 | A Mutation in the Golgi Qb-SNARE Gene GOSR2 Causes Progressive Myoclonus Epilepsy with Early<br>Ataxia. American Journal of Human Genetics, 2011, 88, 657-663.                                                  | 2.6 | 166       |
| 41 | Rett syndrome: clinical review and genetic update. Journal of Medical Genetics, 2005, 42, 1-7.                                                                                                                  | 1.5 | 161       |
| 42 | Targeted Nextâ€Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability. Human<br>Mutation, 2015, 36, 1197-1204.                                                                        | 1.1 | 161       |
| 43 | Early onset seizures and Rett-like features associated with mutations in CDKL5. European Journal of<br>Human Genetics, 2005, 13, 1113-1120.                                                                     | 1.4 | 160       |
| 44 | Mutations in the DLG3 Gene Cause Nonsyndromic X-Linked Mental Retardation. American Journal of<br>Human Genetics, 2004, 75, 318-324.                                                                            | 2.6 | 157       |
| 45 | XLMR genes: update 2007. European Journal of Human Genetics, 2008, 16, 422-434.                                                                                                                                 | 1.4 | 155       |
| 46 | The original Lujan syndrome family has a novel missense mutation (p.N1007S) in the MED12 gene.<br>Journal of Medical Genetics, 2007, 44, 472-477.                                                               | 1.5 | 153       |
| 47 | Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains.<br>Nature Neuroscience, 2017, 20, 1043-1051.                                                                   | 7.1 | 152       |
| 48 | ARX spectrum disorders: making inroads into the molecular pathology. Human Mutation, 2010, 31, 889-900.                                                                                                         | 1.1 | 151       |
| 49 | Mutations in ZDHHC9, Which Encodes a Palmitoyltransferase of NRAS and HRAS, Cause X-Linked Mental<br>Retardation Associated with a Marfanoid Habitus. American Journal of Human Genetics, 2007, 80,<br>982-987. | 2.6 | 150       |
| 50 | La FAM fatale: USP9X in development and disease. Cellular and Molecular Life Sciences, 2015, 72, 2075-2089.                                                                                                     | 2.4 | 145       |
| 51 | A missense mutation in RPS6KA3 (RSK2) responsible for non-specific mental retardation. Nature<br>Genetics, 1999, 22, 13-14.                                                                                     | 9.4 | 142       |
| 52 | Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Molecular<br>Psychiatry, 2016, 21, 126-132.                                                                                   | 4.1 | 142       |
| 53 | Mutations in the polyglutamine binding protein 1 gene cause X-linked mental retardation. Nature Genetics, 2003, 35, 313-315.                                                                                    | 9.4 | 139       |
| 54 | Mutations in the guanine nucleotide exchange factor gene IQSEC2 cause nonsyndromic intellectual disability. Nature Genetics, 2010, 42, 486-488.                                                                 | 9.4 | 134       |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders.<br>American Journal of Human Genetics, 2016, 98, 541-552.                                                                                              | 2.6 | 132       |
| 56 | Oligosaccharyltransferase-Subunit Mutations in Nonsyndromic Mental Retardation. American<br>Journal of Human Genetics, 2008, 82, 1150-1157.                                                                                                         | 2.6 | 130       |
| 57 | Structural variation in Xq28: MECP2 duplications in 1% of patients with unexplained XLMR and in 2% of male patients with severe encephalopathy. European Journal of Human Genetics, 2009, 17, 444-453.                                              | 1.4 | 130       |
| 58 | Nonsense-mediated mRNA decay: Inter-individual variability and human disease. Neuroscience and<br>Biobehavioral Reviews, 2014, 46, 175-186.                                                                                                         | 2.9 | 130       |
| 59 | Functional characterization of GATA3 mutations causing the hypoparathyroidism-deafness-renal (HDR)<br>dysplasia syndrome: insight into mechanisms of DNA binding by the GATA3 transcription factor. Human<br>Molecular Genetics, 2006, 16, 265-275. | 1.4 | 129       |
| 60 | â€~North Sea' progressive myoclonus epilepsy: phenotype of subjects with GOSR2 mutation. Brain, 2013,<br>136, 1146-1154.                                                                                                                            | 3.7 | 129       |
| 61 | YY1 Haploinsufficiency Causes an Intellectual Disability Syndrome Featuring Transcriptional and Chromatin Dysfunction. American Journal of Human Genetics, 2017, 100, 907-925.                                                                      | 2.6 | 125       |
| 62 | The genetic basis of cerebral palsy. Developmental Medicine and Child Neurology, 2017, 59, 462-469.                                                                                                                                                 | 1.1 | 125       |
| 63 | ARX: a gene for all seasons. Current Opinion in Genetics and Development, 2006, 16, 308-316.                                                                                                                                                        | 1.5 | 123       |
| 64 | Defects in tRNA Anticodon Loop 2′- <i>O</i> -Methylation Are Implicated in Nonsyndromic X-Linked<br>Intellectual Disability due to Mutations in <i>FTSJ1</i> . Human Mutation, 2015, 36, 1176-1187.                                                 | 1.1 | 122       |
| 65 | Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Human Molecular Genetics, 2013, 22, 1816-1825.                                                                          | 1.4 | 120       |
| 66 | Mutations in the FTSJ1 Gene Coding for a Novel S-Adenosylmethionine–Binding Protein Cause<br>Nonsyndromic X-Linked Mental Retardation. American Journal of Human Genetics, 2004, 75, 305-309.                                                       | 2.6 | 117       |
| 67 | Mutations in USP9X Are Associated with X-Linked Intellectual Disability and Disrupt Neuronal Cell<br>Migration and Growth. American Journal of Human Genetics, 2014, 94, 470-478.                                                                   | 2.6 | 117       |
| 68 | Mutations of the UPF3B gene, which encodes a protein widely expressed in neurons, are associated with nonspecific mental retardation with or without autism. Molecular Psychiatry, 2010, 15, 767-776.                                               | 4.1 | 113       |
| 69 | Biallelic SUN5 Mutations Cause Autosomal-Recessive Acephalic Spermatozoa Syndrome. American<br>Journal of Human Genetics, 2016, 99, 942-949.                                                                                                        | 2.6 | 113       |
| 70 | Variable expression of mental retardation, autism, seizures, and dystonic hand movements in two<br>families with an identicalARX gene mutation. American Journal of Medical Genetics Part A, 2002, 112,<br>405-411.                                 | 2.4 | 111       |
| 71 | A Focal Epilepsy and Intellectual Disability Syndrome Is Due to a Mutation in TBC1D24. American Journal of Human Genetics, 2010, 87, 371-375.                                                                                                       | 2.6 | 111       |
| 72 | Unstable TTTTA/TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type 3. Nature Communications, 2019, 10, 4919.                                                                                                      | 5.8 | 111       |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The Koolen-de Vries syndrome: a phenotypic comparison of patients with a 17q21.31 microdeletion versus a KANSL1 sequence variant. European Journal of Human Genetics, 2016, 24, 652-659.                                                         | 1.4 | 108       |
| 74 | Mutations in a Novel Gene, NHS, Cause the Pleiotropic Effects of Nance-Horan Syndrome, Including<br>Severe Congenital Cataract, Dental Anomalies, and Mental Retardation. American Journal of Human<br>Genetics, 2003, 73, 1120-1130.            | 2.6 | 107       |
| 75 | Fine-Scale Survey of X Chromosome Copy Number Variants and Indels Underlying Intellectual<br>Disability. American Journal of Human Genetics, 2010, 87, 173-188.                                                                                  | 2.6 | 107       |
| 76 | A UPF3-mediated regulatory switch that maintains RNA surveillance. Nature Structural and Molecular<br>Biology, 2009, 16, 747-753.                                                                                                                | 3.6 | 106       |
| 77 | CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes.<br>European Journal of Human Genetics, 2010, 18, 544-552.                                                                                        | 1.4 | 105       |
| 78 | Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nature Communications, 2020, 11, 4932.                                                                                                                   | 5.8 | 105       |
| 79 | Mutation frequencies of X-linked mental retardation genes in families from the EuroMRX consortium.<br>Human Mutation, 2007, 28, 207-208.                                                                                                         | 1.1 | 103       |
| 80 | Mutations in the Gene Encoding the Sigma 2 Subunit of the Adaptor Protein 1 Complex, AP1S2, Cause<br>X-Linked Mental Retardation. American Journal of Human Genetics, 2006, 79, 1119-1124.                                                       | 2.6 | 102       |
| 81 | XNP mutation in a large family with Juberg-Marsidi syndrome. Nature Genetics, 1996, 12, 359-360.                                                                                                                                                 | 9.4 | 101       |
| 82 | The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia<br>regulates neural progenitor cell behaviour and neuronal outgrowth. Human Molecular Genetics,<br>2013, 22, 4673-4687.                    | 1.4 | 101       |
| 83 | CCDC22 deficiency in humans blunts activation of proinflammatory NF-ήB signaling. Journal of Clinical<br>Investigation, 2013, 123, 2244-2256.                                                                                                    | 3.9 | 101       |
| 84 | Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate<br>cognitive impairment in humans. Proceedings of the National Academy of Sciences of the United States<br>of America, 2007, 104, 18163-18168. | 3.3 | 100       |
| 85 | Abnormal Cell Sorting Underlies the Unique X-Linked Inheritance of PCDH19 Epilepsy. Neuron, 2018, 97, 59-66.e5.                                                                                                                                  | 3.8 | 100       |
| 86 | Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2. Nature Communications, 2019, 10, 4920.                                                                                                   | 5.8 | 99        |
| 87 | Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability. Molecular Psychiatry, 2012, 17, 1103-1115.                                                                      | 4.1 | 97        |
| 88 | <i>TBC1D24</i> genotype–phenotype correlation. Neurology, 2016, 87, 77-85.                                                                                                                                                                       | 1.5 | 97        |
| 89 | Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nature Genetics, 2020, 52, 1046-1056.                                                                                                                                  | 9.4 | 96        |
| 90 | De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with<br>Developmental Delay and Congenital Malformations. American Journal of Human Genetics, 2016, 98,<br>373-381.                                    | 2.6 | 95        |

| #   | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Mutations of protocadherin 19 in female epilepsy (PCDH19-FE) lead to allopregnanolone deficiency.<br>Human Molecular Genetics, 2015, 24, 5250-5259.                                                                                                            | 1.4  | 93        |
| 92  | The Molecular Basis of X-Linked Spondyloepiphyseal Dysplasia Tarda. American Journal of Human<br>Genetics, 2001, 68, 1386-1397.                                                                                                                                | 2.6  | 90        |
| 93  | A Noncoding, Regulatory Mutation Implicates HCFC1 in Nonsyndromic Intellectual Disability. American<br>Journal of Human Genetics, 2012, 91, 694-702.                                                                                                           | 2.6  | 89        |
| 94  | X-linked myoclonic epilepsy with spasticity and intellectual disability. Neurology, 2002, 59, 348-356.                                                                                                                                                         | 1.5  | 88        |
| 95  | Identification and characterization of a missense mutation in the O-linked β-N-acetylglucosamine<br>(O-GlcNAc) transferase gene that segregates with X-linked intellectual disability. Journal of<br>Biological Chemistry, 2017, 292, 8948-8963.               | 1.6  | 87        |
| 96  | De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with<br>Contractures, Macrocephaly, and Dyskinesias. American Journal of Human Genetics, 2018, 103, 666-678.                                                           | 2.6  | 87        |
| 97  | A systematic review and meta-analysis of 271 PCDH19-variant individuals identifies psychiatric comorbidities, and association of seizure onset and disease severity. Molecular Psychiatry, 2019, 24, 241-251.                                                  | 4.1  | 86        |
| 98  | Mutations in the BRWD3 Gene Cause X-Linked Mental Retardation Associated with Macrocephaly.<br>American Journal of Human Genetics, 2007, 81, 367-374.                                                                                                          | 2.6  | 85        |
| 99  | Characterization of the Human Glutamate Receptor Subunit 3 Gene (GRIA3), a Candidate for Bipolar<br>Disorder and Nonspecific X-Linked Mental Retardation. Genomics, 1999, 62, 356-368.                                                                         | 1.3  | 84        |
| 100 | A ubiquitin-dependent signalling axis specific for ALKBH-mediated DNA dealkylation repair. Nature, 2017, 551, 389-393.                                                                                                                                         | 13.7 | 83        |
| 101 | THOC2 Mutations Implicate mRNA-Export Pathway in X-Linked Intellectual Disability. American Journal of Human Genetics, 2015, 97, 302-310.                                                                                                                      | 2.6  | 82        |
| 102 | Genetic or Other Causation Should Not Change the Clinical Diagnosis of Cerebral Palsy. Journal of<br>Child Neurology, 2019, 34, 472-476.                                                                                                                       | 0.7  | 82        |
| 103 | <i>FOXP1</i> mutations cause intellectual disability and a recognizable phenotype. American Journal of Medical Genetics, Part A, 2013, 161, 3166-3175.                                                                                                         | 0.7  | 79        |
| 104 | Loss of Usp9x Disrupts Cortical Architecture, Hippocampal Development and TGFÎ <sup>2</sup> -Mediated Axonogenesis. PLoS ONE, 2013, 8, e68287.                                                                                                                 | 1.1  | 77        |
| 105 | Mouse orthologue of ARX, a gene mutated in several X-linked forms of mental retardation and<br>epilepsy, is a marker of adult neural stem cells and forebrain GABAergic neurons. Developmental<br>Dynamics, 2004, 231, 631-639.                                | 0.8  | 76        |
| 106 | Two novel JAK2 exon 12 mutations in JAK2V617F-negative polycythaemia vera patients. Leukemia, 2008, 22,<br>870-873.                                                                                                                                            | 3.3  | 76        |
| 107 | Fibroblast growth factor homologous factor 2 ( FHF2 ): gene structure, expression and mapping to<br>the BA¶rjeson-Forssman-Lehmann syndrome region in Xq26 delineated by a duplication breakpoint in a<br>BFLS-like patient. Human Genetics, 1999, 104, 56-63. | 1.8  | 75        |
| 108 | ZNF674: A New Krüppel-Associated Box–Containing Zinc-Finger Gene Involved in Nonsyndromic<br>X-Linked Mental Retardation. American Journal of Human Genetics, 2006, 78, 265-278.                                                                               | 2.6  | 75        |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Epilepsy and mental retardation limited to females with PCDH19 mutations can present de novo or in single generation families. Journal of Medical Genetics, 2010, 47, 211-216.                                              | 1.5 | 74        |
| 110 | Evolution of the human X – a smart and sexy chromosome that controls speciation and development.<br>Cytogenetic and Genome Research, 2002, 99, 141-145.                                                                     | 0.6 | 72        |
| 111 | Dominant <i>KCNA2</i> mutation causes episodic ataxia and pharmacoresponsive epilepsy. Neurology, 2016, 87, 1975-1984.                                                                                                      | 1.5 | 71        |
| 112 | Mutations in the intellectual disability gene KDM5C reduce protein stability and demethylase activity.<br>Human Molecular Genetics, 2015, 24, 2861-2872.                                                                    | 1.4 | 69        |
| 113 | ZC4H2 Mutations Are Associated with Arthrogryposis Multiplex Congenita and Intellectual Disability through Impairment of Central and Peripheral Synaptic Plasticity. American Journal of Human Genetics, 2013, 92, 681-695. | 2.6 | 68        |
| 114 | Severe childhood speech disorder. Neurology, 2020, 94, e2148-e2167.                                                                                                                                                         | 1.5 | 68        |
| 115 | Genes for Cognitive Function: Developments on the X. Genome Research, 2000, 10, 157-163.                                                                                                                                    | 2.4 | 67        |
| 116 | FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure. Nucleic Acids Research, 2009, 37, 1269-1279.                                           | 6.5 | 67        |
| 117 | Identification and characterization of two novel JARID1C mutations: suggestion of an emerging genotype–phenotype correlation. European Journal of Human Genetics, 2010, 18, 330-335.                                        | 1.4 | 66        |
| 118 | Seizures Are Regulated by Ubiquitin-specific Peptidase 9 X-linked (USP9X), a De-Ubiquitinase. PLoS<br>Genetics, 2015, 11, e1005022.                                                                                         | 1.5 | 66        |
| 119 | Nonsyndromic X-linked mental retardation: where are the missing mutations?. Trends in Genetics, 2003, 19, 316-320.                                                                                                          | 2.9 | 65        |
| 120 | Rare copy number variation in cerebral palsy. European Journal of Human Genetics, 2014, 22, 40-45.                                                                                                                          | 1.4 | 65        |
| 121 | Gene Structure and Subcellular Localization of FMR2, a Member of a New Family of Putative Transcription Activators. Genomics, 1997, 44, 201-213.                                                                            | 1.3 | 64        |
| 122 | Hypomorphic Temperature-Sensitive Alleles of NSDHL Cause CK Syndrome. American Journal of Human<br>Genetics, 2010, 87, 905-914.                                                                                             | 2.6 | 64        |
| 123 | The clinical picture of the Börjeson-Forssman-Lehmann syndrome in males and heterozygous females with PHF6 mutations. Clinical Genetics, 2004, 65, 226-232.                                                                 | 1.0 | 63        |
| 124 | Functional characterization of the AFF (AF4/FMR2) family of RNA-binding proteins: insights into the molecular pathology of FRAXE intellectual disability. Human Molecular Genetics, 2011, 20, 1873-1885.                    | 1.4 | 63        |
| 125 | Aristaless-related homeobox gene, the gene responsible for West syndrome and related disorders, is a<br>Groucho/transducin-like enhancer of split dependent transcriptional repressor. Neuroscience, 2007,<br>146, 236-247. | 1.1 | 62        |
| 126 | Mutation detection in FGFR2 craniosynostosis syndromes. Human Genetics, 1997, 99, 251-255.                                                                                                                                  | 1.8 | 60        |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | X-linked mild non-syndromic mental retardation with neuropsychiatric problems and the missense mutation A365E in PAK3. , 2003, 120A, 509-517.                                                                         |     | 60        |
| 128 | Disruption of a new X linked gene highly expressed in brain in a family with two mentally retarded males. Journal of Medical Genetics, 2004, 41, 736-742.                                                             | 1.5 | 60        |
| 129 | Folate-sensitive fragile site FRA10A is due to an expansion of a CGG repeat in a novel gene, FRA10AC1, encoding a nuclear protein. Genomics, 2004, 84, 69-81.                                                         | 1.3 | 60        |
| 130 | Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism<br>Spectrum Disorder, and Congenital Anomalies. American Journal of Human Genetics, 2018, 102, 985-994.           | 2.6 | 59        |
| 131 | Cloning and characterization of a new human Xq13 gene, encoding a putative helicase. Human<br>Molecular Genetics, 1994, 3, 1957-1964.                                                                                 | 1.4 | 58        |
| 132 | Three new families with X-linked mental retardation caused by the 428-451dup(24bp) mutation in ARX.<br>Clinical Genetics, 2004, 66, 39-45.                                                                            | 1.0 | 58        |
| 133 | MCT8 mutation analysis and identification of the first female with Allan–Herndon–Dudley syndrome due to loss of MCT8 expression. European Journal of Human Genetics, 2008, 16, 1029-1037.                             | 1.4 | 56        |
| 134 | O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes<br>involved in cell fate determination and signaling. Journal of Biological Chemistry, 2018, 293,<br>10810-10824. | 1.6 | 56        |
| 135 | Splicing mutation in the ATR-X gene can lead to a dysmorphic mental retardation phenotype without alpha-thalassemia. American Journal of Human Genetics, 1996, 58, 499-505.                                           | 2.6 | 56        |
| 136 | Fragile XE-associated familial mental retardation protein 2 (FMR2) acts as a potent transcription activator. Journal of Human Genetics, 2001, 46, 251-259.                                                            | 1.1 | 55        |
| 137 | Disruptions of the novel KIAA1202 gene are associated with X-linked mental retardation. Human Genetics, 2006, 118, 578-590.                                                                                           | 1.8 | 55        |
| 138 | A Upf3b-mutant mouse model with behavioral and neurogenesis defects. Molecular Psychiatry, 2018, 23, 1773-1786.                                                                                                       | 4.1 | 54        |
| 139 | FMR2 Expression in Families with Fraxe Mental Retardation. Human Molecular Genetics, 1997, 6, 435-441.                                                                                                                | 1.4 | 53        |
| 140 | â€~Big issues' in neurodevelopment for children and adults with congenital heart disease. Open Heart,<br>2019, 6, e000998.                                                                                            | 0.9 | 53        |
| 141 | Expanding the molecular basis and phenotypic spectrum of X-linked Joubert syndrome associated with<br>OFD1 mutations. European Journal of Human Genetics, 2012, 20, 806-809.                                          | 1.4 | 52        |
| 142 | Pcdh19 Loss-of-Function Increases Neuronal Migration In Vitro but is Dispensable for Brain Development in Mice. Scientific Reports, 2016, 6, 26765.                                                                   | 1.6 | 52        |
| 143 | New insights into Brunner syndrome and potential for targeted therapy. Clinical Genetics, 2016, 89, 120-127.                                                                                                          | 1.0 | 52        |
| 144 | CCDC22: a novel candidate gene for syndromic X-linked intellectual disability. Molecular Psychiatry, 2012, 17, 4-7                                                                                                    | 4.1 | 50        |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders. Genome<br>Medicine, 2021, 13, 63.                                                                                                            | 3.6 | 50        |
| 146 | The FMR2 gene, FRAXE and non-specific X-linked mental retardation: clinical and molecular aspects.<br>Annals of Human Genetics, 2000, 64, 95-106.                                                                                     | 0.3 | 49        |
| 147 | A Recurrent RNA-Splicing Mutation in the SEDL Gene Causes X-Linked Spondyloepiphyseal Dysplasia<br>Tarda. American Journal of Human Genetics, 2001, 68, 1398-1407.                                                                    | 2.6 | 49        |
| 148 | HCFC1 loss-of-function mutations disrupt neuronal and neural progenitor cells of the developing brain. Human Molecular Genetics, 2015, 24, 3335-3347.                                                                                 | 1.4 | 47        |
| 149 | Cloning and expression of the murine homologue of a putative human X-linked nuclear protein gene closely linked to PGK1 in Xq13.3. Human Molecular Genetics, 1994, 3, 39-44.                                                          | 1.4 | 46        |
| 150 | Loss of SLC38A5 and FTSJ1 at Xp11.23 in three brothers with non-syndromic mental retardation due to a microdeletion in an unstable genomic region. Human Genetics, 2007, 121, 539-547.                                                | 1.8 | 46        |
| 151 | Interchromosomal Insertional Translocation at Xq26.3 Alters <i>SOX3</i> Expression in an Individual<br>With XX Male Sex Reversal. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E815-E820.                             | 1.8 | 46        |
| 152 | Gene Structure and Expression Study of the SEDL Gene for Spondyloepiphyseal Dysplasia Tarda.<br>Genomics, 2000, 69, 242-251.                                                                                                          | 1.3 | 45        |
| 153 | The Börjeson–Forssman–Lehman syndrome (BFLS, MIM #301900). European Journal of Human Genetics,<br>2006, 14, 1233-1237.                                                                                                                | 1.4 | 45        |
| 154 | Protein and gene expression analysis of Phf6, the gene mutated in the Börjeson–Forssman–Lehmann<br>Syndrome of intellectual disability and obesity. Gene Expression Patterns, 2007, 7, 858-871.                                       | 0.3 | 45        |
| 155 | Eight further individuals with intellectual disability and epilepsy carrying<br>bi-allelic <i>CNTNAP2</i> aberrations allow delineation of the mutational and phenotypic spectrum.<br>Journal of Medical Genetics, 2016, 53, 820-827. | 1.5 | 45        |
| 156 | De novo and inherited mutations in the X-linked gene CLCN4 are associated with syndromic<br>intellectual disability and behavior and seizure disorders in males and females. Molecular Psychiatry,<br>2018, 23, 222-230.              | 4.1 | 45        |
| 157 | Mutation screening in Borjeson-Forssman-Lehmann syndrome: identification of a novel de novo PHF6 mutation in a female patient. Journal of Medical Genetics, 2005, 43, 238-243.                                                        | 1.5 | 43        |
| 158 | Xp11.2 microduplications including IQSEC2, TSPYL2 and KDM5C genes in patients with neurodevelopmental disorders. European Journal of Human Genetics, 2016, 24, 373-380.                                                               | 1.4 | 43        |
| 159 | Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nature Communications, 2019, 10, 4679.                                                                                      | 5.8 | 43        |
| 160 | Inhibition of Upf2-Dependent Nonsense-Mediated Decay Leads to Behavioral and Neurophysiological<br>Abnormalities by Activating the Immune Response. Neuron, 2019, 104, 665-679.e8.                                                    | 3.8 | 43        |
| 161 | Molecular pathology of expanded polyalanine tract mutations in the Aristaless-related homeobox gene. Genomics, 2007, 90, 59-71.                                                                                                       | 1.3 | 42        |
| 162 | Novel mutations in NLGN3 causing autism spectrum disorder and cognitive impairment. Human Mutation, 2019, 40, 2021-2032.                                                                                                              | 1.1 | 42        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Partial Loss of USP9X Function Leads to a Male Neurodevelopmental and Behavioral Disorder<br>Converging on Transforming Growth Factor β Signaling. Biological Psychiatry, 2020, 87, 100-112.                        | 0.7 | 42        |
| 164 | Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. Human Genetics and Genomics Advances, 2022, 3, 100075.                                           | 1.0 | 42        |
| 165 | FRA2A Is a CGG Repeat Expansion Associated with Silencing of AFF3. PLoS Genetics, 2014, 10, e1004242.                                                                                                               | 1.5 | 41        |
| 166 | Nance–Horan syndrome protein, NHS, associates with epithelial cell junctions. Human Molecular<br>Genetics, 2006, 15, 1972-1983.                                                                                     | 1.4 | 40        |
| 167 | Reduced steroidogenesis in patients with <scp>PCDH</scp> 19â€female limited epilepsy. Epilepsia, 2017, 58,<br>e91-e95.                                                                                              | 2.6 | 40        |
| 168 | PHF6 regulates hematopoietic stem and progenitor cells and its loss synergizes with expression of TLX3 to cause leukemia. Blood, 2019, 133, 1729-1741.                                                              | 0.6 | 40        |
| 169 | A Survey of Rare Epigenetic Variation in 23,116 Human Genomes Identifies Disease-Relevant Epivariations and CGG Expansions. American Journal of Human Genetics, 2020, 107, 654-669.                                 | 2.6 | 40        |
| 170 | Identification of three novel SEDL mutations, including mutation in the rare, non-canonical splice site of exon 4. Clinical Genetics, 2003, 64, 235-242.                                                            | 1.0 | 39        |
| 171 | A Regulatory Path Associated with X-Linked Intellectual Disability and Epilepsy Links KDM5C to the Polyalanine Expansions in ARX. American Journal of Human Genetics, 2013, 92, 114-125.                            | 2.6 | 39        |
| 172 | HUWE1 mutations in Juberg-Marsidi and Brooks syndromes: the results of an X-chromosome exome sequencing study. BMJ Open, 2016, 6, e009537.                                                                          | 0.8 | 39        |
| 173 | Targeted knockout of a chemokine-like gene increases anxiety and fear responses. Proceedings of the<br>National Academy of Sciences of the United States of America, 2018, 115, E1041-E1050.                        | 3.3 | 39        |
| 174 | PCDH19 regulation of neural progenitor cell differentiation suggests asynchrony of neurogenesis as<br>a mechanism contributing to PCDH19 Girls Clustering Epilepsy. Neurobiology of Disease, 2018, 116,<br>106-119. | 2.1 | 39        |
| 175 | An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. European<br>Journal of Human Genetics, 2020, 28, 706-714.                                                              | 1.4 | 38        |
| 176 | Identification of a mutation in theXNP/ATR-X gene in a family reported as Smith-Fineman-Myers syndrome. , 2000, 91, 83-85.                                                                                          |     | 37        |
| 177 | Overlapping submicroscopic deletions in Xq28 in two unrelated boys with developmental disorders:<br>identification of a gene near FRAXE. American Journal of Human Genetics, 1995, 56, 907-14.                      | 2.6 | 37        |
| 178 | A distinctive gene expression fingerprint in mentally retarded male patients reflects disease-causing defects in the histone demethylase KDM5C. PathoGenetics, 2010, 3, 2.                                          | 5.7 | 35        |
| 179 | Disruptive variants of <i>CSDE1</i> associate with autism and interfere with neuronal development and synaptic transmission. Science Advances, 2019, 5, eaax2166.                                                   | 4.7 | 35        |
| 180 | Cyclin-Dependent Kinase-Like 5 ( <i>CDKL5</i> ) Mutation Screening in Rett Syndrome and Related<br>Disorders. Twin Research and Human Genetics, 2010, 13, 168-178.                                                  | 0.3 | 34        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Mutations in the nuclear localization sequence of the Aristaless related homeobox; sequestration of mutant ARX with IPO13 disrupts normal subcellular distribution of the transcription factor and retards cell division. PathoGenetics, 2010, 3, 1. | 5.7 | 33        |
| 182 | Human wild-type SEDL protein functionally complements yeast Trs20p but some naturally occurring SEDL mutants do not. Gene, 2003, 320, 137-144.                                                                                                       | 1.0 | 32        |
| 183 | A genotype-first approach identifies an intellectual disability-overweight syndrome caused by PHIP<br>haploinsufficiency. European Journal of Human Genetics, 2018, 26, 54-63.                                                                       | 1.4 | 32        |
| 184 | Subtle functional defects in the Arf-specific guanine nucleotide exchange factor IQSEC2 cause non-syndromic X-linked intellectual disability. Small GTPases, 2010, 1, 98-103.                                                                        | 0.7 | 31        |
| 185 | Novel IL1RAPL1 mutations associated with intellectual disability impair synaptogenesis. Human<br>Molecular Genetics, 2015, 24, 1106-1118.                                                                                                            | 1.4 | 31        |
| 186 | Pathogenic copy number variants that affect gene expression contribute to genomic burden in cerebral palsy. Npj Genomic Medicine, 2018, 3, 33.                                                                                                       | 1.7 | 31        |
| 187 | Broadening the phenotype associated with mutations in UPF3B: Two further cases with renal dysplasia and variable developmental delay. European Journal of Medical Genetics, 2012, 55, 476-479.                                                       | 0.7 | 30        |
| 188 | Identification of an <i>IGSF1</i> â€specific deletion in a fiveâ€generation pedigree with Xâ€linked Central<br>Hypothyroidism without macroorchidism. Clinical Endocrinology, 2016, 85, 609-615.                                                     | 1.2 | 30        |
| 189 | Ohtahara syndrome in a family with an ARX protein truncation mutation (c.81C>G/p.Y27X). European<br>Journal of Human Genetics, 2010, 18, 157-162.                                                                                                    | 1.4 | 29        |
| 190 | Identity by descent fine mapping of familial adult myoclonus epilepsy (FAME) to 2p11.2–2q11.2. Human<br>Genetics, 2016, 135, 1117-1125.                                                                                                              | 1.8 | 29        |
| 191 | Choreoathetosis, congenital hypothyroidism and neonatal respiratory distress syndrome with intact<br><i>NKX2â€l</i> . American Journal of Medical Genetics, Part A, 2012, 158A, 3168-3173.                                                           | 0.7 | 28        |
| 192 | TBC1D24 mutation associated with focal epilepsy, cognitive impairment and a distinctive cerebro-cerebellar malformation. Epilepsy Research, 2013, 105, 240-244.                                                                                      | 0.8 | 28        |
| 193 | Increased <i>STAG2</i> dosage defines a novel cohesinopathy with intellectual disability and behavioral problems. Human Molecular Genetics, 2015, 24, 7171-7181.                                                                                     | 1.4 | 28        |
| 194 | Protocadherin 19 (PCDH19) interacts with paraspeckle protein NONO to co-regulate gene expression with estrogen receptor alpha (ERα). Human Molecular Genetics, 2017, 26, 2042-2052.                                                                  | 1.4 | 28        |
| 195 | Severe neurocognitive and growth disorders due to variation in <i>THOC2</i> , an essential component of nuclear mRNA export machinery. Human Mutation, 2018, 39, 1126-1138.                                                                          | 1.1 | 28        |
| 196 | In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy. Brain, 2022, 145, 119-141.                                                                                                                           | 3.7 | 28        |
| 197 | Abnormal expression of the KLF8 (ZNF741) gene in a female patient with an X;autosome translocation t(X;21)(p11.2;q22.3) and non-syndromic mental retardation. Journal of Medical Genetics, 2002, 39, 113-117.                                        | 1.5 | 27        |
| 198 | USP9X deubiquitylating enzyme maintains RAPTOR protein levels, mTORC1 signalling and proliferation in neural progenitors. Scientific Reports, 2017, 7, 391.                                                                                          | 1.6 | 27        |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Novel PHF6 mutation p.D333del causes Borjeson-Forssman-Lehmann syndrome. Journal of Medical<br>Genetics, 2003, 40, 50e-50.                                                                                | 1.5 | 26        |
| 200 | Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder. Molecular Psychiatry, 2019, 24, 1748-1768.                              | 4.1 | 26        |
| 201 | Novel causative mutations in patients with Nance-Horan syndrome and altered localization of the mutant NHS-A protein isoform. Molecular Vision, 2008, 14, 1856-64.                                        | 1.1 | 26        |
| 202 | Glutamate receptors and learning and memory. Nature Genetics, 2010, 42, 925-926.                                                                                                                          | 9.4 | 25        |
| 203 | Homozygous mutation of STXBP5L explains an autosomal recessive infantile-onset neurodegenerative disorder. Human Molecular Genetics, 2015, 24, 2000-2010.                                                 | 1.4 | 25        |
| 204 | A recurrent missense variant inSLC9A7causes nonsyndromic X-linked intellectual disability with alteration of Golgi acidification and aberrant glycosylation. Human Molecular Genetics, 2019, 28, 598-614. | 1.4 | 25        |
| 205 | Spondyloepiphyseal dysplasia tarda (SEDL, MIM #313400). European Journal of Human Genetics, 2003, 11,<br>639-642.                                                                                         | 1.4 | 24        |
| 206 | 1024C>T (R342X) is a recurrent PHF6 mutation also found in the original Börjeson–Forssman–Lehmann<br>syndrome family. European Journal of Human Genetics, 2004, 12, 787-789.                              | 1.4 | 24        |
| 207 | MED12-related XLID disorders are dose-dependent of immediate early genes (IEGs) expression. Human<br>Molecular Genetics, 2017, 26, 2062-2075.                                                             | 1.4 | 24        |
| 208 | Disentangling the paradox of the PCDH19 clustering epilepsy, a disorder of cellular mosaics. Current<br>Opinion in Genetics and Development, 2020, 65, 169-175.                                           | 1.5 | 24        |
| 209 | Mutation screening of brain-expressed X-chromosomal miRNA genes in 464 patients with nonsyndromic X-linked mental retardation. European Journal of Human Genetics, 2007, 15, 375-378.                     | 1.4 | 23        |
| 210 | Lessons learnt from large-scale exon re-sequencing of the X chromosome. Human Molecular Genetics, 2009, 18, R60-R64.                                                                                      | 1.4 | 23        |
| 211 | Screening and cell-based assessment of mutations in the Aristaless-related homeobox (ARX) gene.<br>Clinical Genetics, 2011, 80, 510-522.                                                                  | 1.0 | 23        |
| 212 | Multiplex families with epilepsy. Neurology, 2016, 86, 713-722.                                                                                                                                           | 1.5 | 23        |
| 213 | A Recurrent De Novo Nonsense Variant in ZSWIM6 Results in Severe Intellectual Disability without<br>Frontonasal or Limb Malformations. American Journal of Human Genetics, 2017, 101, 995-1005.           | 2.6 | 23        |
| 214 | Clinical and functional characterization of recurrent missense variants implicated<br>in <i>THOC6</i> -related intellectual disability. Human Molecular Genetics, 2019, 28, 952-960.                      | 1.4 | 23        |
| 215 | Familial adult myoclonic epilepsy type 1 SAMD12 TTTCA repeat expansion arose 17,000 years ago and is present in Sri Lankan and Indian families. European Journal of Human Genetics, 2020, 28, 973-978.    | 1.4 | 23        |
| 216 | The FMR2 gene, FRAXE and non-specific X-linked mental retardation: clinical and molecular aspects.<br>Annals of Human Genetics, 2000, 64, 95-106.                                                         | 0.3 | 23        |

| #   | Article                                                                                                                                                                                                                                       | IF        | CITATIONS      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 217 | Assignment of a polycomb-like chromobox gene (CBX2) to human chromosome 17q25. Genomics, 1995, 26, 130-133.                                                                                                                                   | 1.3       | 22             |
| 218 | Characterisation and expression of a large, 13.7 kb FMR2 isoform European Journal of Human Genetics, 1999, 7, 157-162.                                                                                                                        | 1.4       | 22             |
| 219 | NHS-A isoform of the NHS gene is a novel interactor of ZO-1. Experimental Cell Research, 2009, 315, 2358-2372.                                                                                                                                | 1.2       | 22             |
| 220 | Analysis of 182 cerebral palsy transcriptomes points to dysregulation of trophic signalling pathways and overlap with autism. Translational Psychiatry, 2018, 8, 88.                                                                          | 2.4       | 22             |
| 221 | Targeted resequencing identifies genes with recurrent variation in cerebral palsy. Npj Genomic<br>Medicine, 2019, 4, 27.                                                                                                                      | 1.7       | 22             |
| 222 | A new microdeletion syndrome involving TBC1D24, ATP6VOC, and PDPK1 causes epilepsy, microcephaly, and developmental delay. Genetics in Medicine, 2019, 21, 1058-1064.                                                                         | 1.1       | 22             |
| 223 | A standardized patient-centered characterization of the phenotypic spectrum of PCDH19 girls clustering epilepsy. Translational Psychiatry, 2020, 10, 127.                                                                                     | 2.4       | 22             |
| 224 | A novel gene, FAM11A, associated with the FRAXF CpG island is transcriptionally silent in FRAXF full mutation. European Journal of Human Genetics, 2002, 10, 767-772.                                                                         | 1.4       | 21             |
| 225 | The molecular basis of intellectual disability: novel genes with naturally occurring mutations causing altered gene expression in the brain. Frontiers in Bioscience - Landmark, 2004, 9, 1.                                                  | 3.0       | 21             |
| 226 | Hybridisation-based resequencing of 17 X-linked intellectual disability genes in 135 patients reveals<br>novel mutations in ATRX, SLC6A8 and PQBP1. European Journal of Human Genetics, 2011, 19, 717-720.                                    | 1.4       | 21             |
| 227 | Reduced polyalanine-expanded Arx mutant protein in developing mouse subpallium alters Lmo1<br>transcriptional regulation. Human Molecular Genetics, 2014, 23, 1084-1094.                                                                      | 1.4       | 20             |
| 228 | XLMR in MRX families 29, 32, 33 and 38 results from the dup24 mutation in the ARX (Aristaless related) Tj ETQo                                                                                                                                | 0 0 0 rgB | T /Qyerlock 10 |
| 229 | A novel contiguous gene deletion of <i>AVPR2</i> and <i>ARHGAP4</i> genes in male dizygotic twins<br>with nephrogenic diabetes insipidus and intellectual disability. American Journal of Medical Genetics,<br>Part A, 2012, 158A, 2511-2518. | 0.7       | 19             |
| 230 | ARX homeodomain mutations abolish DNA binding and lead to a loss of transcriptional repression.<br>Human Molecular Genetics, 2012, 21, 1639-1647.                                                                                             | 1.4       | 19             |
| 231 | Human disease genes website series: An international, open and dynamic library for upâ€toâ€date clinical<br>information. American Journal of Medical Genetics, Part A, 2021, 185, 1039-1046.                                                  | 0.7       | 19             |
| 232 | Construction of a YAC contig spanning the Xq13.3 subband. Genomics, 1995, 26, 115-122.                                                                                                                                                        | 1.3       | 18             |
| 233 | Brain cysts associated with mutation in the Aristaless related homeobox gene, ARX. Journal of Neurology, Neurosurgery and Psychiatry, 2003, 74, 536-538.                                                                                      | 0.9       | 18             |
| 234 | Refined mapping of X-linked reticulate pigmentary disorder and sequencing of candidate genes. Human<br>Genetics, 2008, 123, 469-476.                                                                                                          | 1.8       | 18             |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Histone demethylase KDM5C is a SAHA-sensitive central hub at the crossroads of transcriptional axes involved in multiple neurodevelopmental disorders. Human Molecular Genetics, 2019, 28, 4089-4102.           | 1.4 | 18        |
| 236 | Disrupted Excitatory Synaptic Contacts and Altered Neuronal Network Activity Underpins the<br>Neurological Phenotype in PCDH19-Clustering Epilepsy (PCDH19-CE). Molecular Neurobiology, 2021, 58,<br>2005-2018. | 1.9 | 18        |
| 237 | Polyalanine Tract Disorders and Neurocognitive Phenotypes. Advances in Experimental Medicine and<br>Biology, 2012, 769, 185-203.                                                                                | 0.8 | 18        |
| 238 | Heterozygous loss of function of <i>IQSEC2</i> / <i>Iqsec2</i> leads to increased activated Arf6 and severe neurocognitive seizure phenotype in females. Life Science Alliance, 2019, 2, e201900386.            | 1.3 | 18        |
| 239 | Physical and transcriptional mapping of DXS56-PGK1 1 Mb region: identification of three new transcripts. Human Molecular Genetics, 1993, 2, 1389-1396.                                                          | 1.4 | 17        |
| 240 | Clinical study of two brothers with a novel 33 bp duplication in the <i>ARX</i> gene. American Journal of Medical Genetics, Part A, 2009, 149A, 1482-1486.                                                      | 0.7 | 17        |
| 241 | Inherited balanced translocation t(9;17)(q33.2;q25.3) concomitant with a 16p13.1 duplication in a patient with schizophrenia. , 2011, 156, 204-214.                                                             |     | 17        |
| 242 | Identical by descent L1CAM mutation in two apparently unrelated families with intellectual disability without L1 syndrome. European Journal of Medical Genetics, 2015, 58, 364-368.                             | 0.7 | 17        |
| 243 | A mutation in <i>COL4A2</i> causes autosomal dominant porencephaly with cataracts. American<br>Journal of Medical Genetics, Part A, 2016, 170, 1059-1063.                                                       | 0.7 | 17        |
| 244 | A mouse model for intellectual disability caused by mutations in the X-linked 2′‑O‑methyltransferase<br>Ftsj1 gene. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2083-2093.          | 1.8 | 17        |
| 245 | Missense variant contribution to USP9X-female syndrome. Npj Genomic Medicine, 2020, 5, 53.                                                                                                                      | 1.7 | 17        |
| 246 | FMR3 is a novel gene associated with FRAXE CpG island and transcriptionally silent in FRAXE full mutations. Journal of Medical Genetics, 2000, 37, 782-784.                                                     | 1.5 | 16        |
| 247 | Cerebral palsy and genomics: an international consortium. Developmental Medicine and Child Neurology, 2018, 60, 209-210.                                                                                        | 1.1 | 16        |
| 248 | Levetiracetam efficacy in PCDH19 Girls Clustering Epilepsy. European Journal of Paediatric Neurology, 2020, 24, 142-147.                                                                                        | 0.7 | 16        |
| 249 | Definition and diagnosis of cerebral palsy in genetic studies: a systematic review. Developmental<br>Medicine and Child Neurology, 2020, 62, 1024-1030.                                                         | 1.1 | 16        |
| 250 | Yield of clinically reportable genetic variants in unselected cerebral palsy by whole genome sequencing. Npj Genomic Medicine, 2021, 6, 74.                                                                     | 1.7 | 16        |
| 251 | Restoring reproductive confidence in families with Xâ€ŀinked mental retardation by finding the causal mutation. Clinical Genetics, 2008, 73, 188-190.                                                           | 1.0 | 15        |
| 252 | BDNF and DYRK1A Are Variable and Inversely Correlated in Lymphoblastoid Cell Lines from Down Syndrome Patients. Molecular Neurobiology, 2012, 46, 297-303.                                                      | 1.9 | 15        |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | NKX2-1 mutation in a family diagnosed with ataxic dyskinetic cerebral palsy. European Journal of Medical Genetics, 2013, 56, 506-509.                                                                                                      | 0.7 | 15        |
| 254 | PCDH19 Pathogenic Variants in Males: Expanding the Phenotypic Spectrum. Advances in Experimental<br>Medicine and Biology, 2020, 1298, 177-187.                                                                                             | 0.8 | 15        |
| 255 | Copy number variants in patients with intellectual disability affect the regulation of ARX transcription factor gene. Human Genetics, 2015, 134, 1163-1182.                                                                                | 1.8 | 14        |
| 256 | Dysregulations of sonic hedgehog signaling in MED12 â€related Xâ€linked intellectual disability disorders.<br>Molecular Genetics & Genomic Medicine, 2019, 7, e00569.                                                                      | 0.6 | 14        |
| 257 | EXOME REPORT: Novel mutation in ATP6V1B2 segregating with autosomal dominant epilepsy,<br>intellectual disability and mild gingival and nail abnormalities. European Journal of Medical Genetics,<br>2020, 63, 103799.                     | 0.7 | 14        |
| 258 | Evidence for a Dual-Pathway, 2-Hit Genetic Model for Focal Cortical Dysplasia and Epilepsy. Neurology:<br>Genetics, 2022, 8, e652.                                                                                                         | 0.9 | 14        |
| 259 | Two unrelated patients with inversions of the X chromosome and non-specific mental retardation: physical and transcriptional mapping of their common breakpoint region in Xq13.1. Journal of Medical Genetics, 1999, 36, 754-758.          | 1.5 | 13        |
| 260 | Borjeson-Forssman-Lehmann Syndrome and Multiple Pituitary Hormone Deficiency. Journal of<br>Pediatric Endocrinology and Metabolism, 2003, 16, 1295-300.                                                                                    | 0.4 | 13        |
| 261 | A novel de novo 27 bp duplication of the <i>ARX</i> gene, resulting from postzygotic mosaicism and<br>leading to three severely affected males in two generations. American Journal of Medical Genetics,<br>Part A, 2009, 149A, 1655-1660. | 0.7 | 13        |
| 262 | Association of <i>SLC32A1</i> Missense Variants With Genetic Epilepsy With Febrile Seizures Plus.<br>Neurology, 2021, 96, e2251-e2260.                                                                                                     | 1.5 | 13        |
| 263 | Xâ€linked intellectual disability: Phenotypic expression in carrier females. Clinical Genetics, 2020, 97,<br>418-425.                                                                                                                      | 1.0 | 12        |
| 264 | Expanding Clinical Presentations Due to Variations in THOC2 mRNA Nuclear Export Factor. Frontiers in Molecular Neuroscience, 2020, 13, 12.                                                                                                 | 1.4 | 12        |
| 265 | Regulating transcriptional activity by phosphorylation: A new mechanism for the ARX homeodomain transcription factor. PLoS ONE, 2018, 13, e0206914.                                                                                        | 1.1 | 11        |
| 266 | Bi-allelic variants in SPATA5L1 lead to intellectual disability, spastic-dystonic cerebral palsy, epilepsy,<br>and hearing loss. American Journal of Human Genetics, 2021, 108, 2006-2016.                                                 | 2.6 | 11        |
| 267 | PCR amplification of large VNTR alleles of D17S5 (YNZ22) locus. Nucleic Acids Research, 1991, 19, 5806-5806.                                                                                                                               | 6.5 | 10        |
| 268 | Loss of FMR2 further emphasizes the link between deregulation of immediate early response genes FOS<br>and JUN and intellectual disability. Human Molecular Genetics, 2013, 22, 2984-2991.                                                 | 1.4 | 10        |
| 269 | A non-coding variant in the 5Ê <sup>1</sup> UTR of DLG3 attenuates protein translation to cause non-syndromic intellectual disability. European Journal of Human Genetics, 2016, 24, 1612-1616.                                            | 1.4 | 10        |
| 270 | Familial epilepsy with anterior polymicrogyria as a presentation of COL18A1 mutations. European<br>Journal of Medical Genetics, 2017, 60, 437-443.                                                                                         | 0.7 | 10        |

| #   | Article                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Variant in the X-chromosome spliceosomal gene CPKOW causes male-lethal microcephaly with intrauterine growth restriction. European Journal of Human Genetics, 2017, 25, 1078-1082.                                                                                              | 1.4 | 10        |
| 272 | Whole genome sequencing in transposition of the great arteries and associations with clinically relevant heart, brain and laterality genes. American Heart Journal, 2022, 244, 1-13.                                                                                            | 1.2 | 10        |
| 273 | A novel locus for X-linked congenital cataract on Xq24. Molecular Vision, 2008, 14, 721-6.                                                                                                                                                                                      | 1.1 | 10        |
| 274 | Is there a Mendelian transmission ratio distortion of the c.429_452dup(24bp) polyalanine tract ARX mutation?. European Journal of Human Genetics, 2012, 20, 1311-1314.                                                                                                          | 1.4 | 9         |
| 275 | Embryonic forebrain transcriptome of mice with polyalanine expansion mutations in the <i>ARX </i> homeobox gene. Human Molecular Genetics, 2016, 25, ddw360.                                                                                                                    | 1.4 | 9         |
| 276 | A synonymous <i>UPF3B</i> variant causing a speech disorder implicates NMD as a regulator of neurodevelopmental disorder gene networks. Human Molecular Genetics, 2020, 29, 2568-2578.                                                                                          | 1.4 | 9         |
| 277 | Characterization ofARHGEF6, a guanine nucleotide exchange factor for Rho GTPases and a candidate<br>gene for X-linked mental retardation: Mutation screening in B�rjeson-Forssman-Lehmann syndrome and<br>MRX27. American Journal of Medical Genetics Part A, 2001, 100, 43-48. | 2.4 | 8         |
| 278 | Partial Androgen Insensitivity Syndrome and t(X;5): Are There Upstream Regulatory Elements of the<br>Androgen Receptor Gene?. Hormone Research in Paediatrics, 2004, 62, 208-214.                                                                                               | 0.8 | 8         |
| 279 | Screening of 20 patients with X-linked mental retardation using chromosome X-specific array-MAPH.<br>European Journal of Medical Genetics, 2007, 50, 399-410.                                                                                                                   | 0.7 | 8         |
| 280 | Genetics of the epilepsies: Genetic twists in the channels and other tales. Epilepsia, 2010, 51, 33-36.                                                                                                                                                                         | 2.6 | 8         |
| 281 | Oligonucleotide correction of an intronic TIMMDC1 variant in cells of patients with severe neurodegenerative disorder. Npj Genomic Medicine, 2022, 7, 9.                                                                                                                        | 1.7 | 8         |
| 282 | Bi-allelic variants in neuronal cell adhesion molecule cause a neurodevelopmental disorder<br>characterized by developmental delay, hypotonia, neuropathy/spasticity. American Journal of Human<br>Genetics, 2022, 109, 518-532.                                                | 2.6 | 8         |
| 283 | The DUB Club: Deubiquitinating Enzymes and Neurodevelopmental Disorders. Biological Psychiatry, 2022, 92, 614-625.                                                                                                                                                              | 0.7 | 8         |
| 284 | Fine mapping and cloning of the breakpoint associated with menkes syndrome in a female patient.<br>Genomics, 1992, 14, 557-561.                                                                                                                                                 | 1.3 | 7         |
| 285 | Is FGF13 a major contributor to genetic epilepsy with febrile seizures plus?. Epilepsy Research, 2016, 128, 48-51.                                                                                                                                                              | 0.8 | 7         |
| 286 | A genomic cause of cerebral palsy should not change the clinical classification. Annals of Clinical and Translational Neurology, 2018, 5, 1011-1011.                                                                                                                            | 1.7 | 7         |
| 287 | Lack of FMR3 expression in a male with non-syndromic mental retardation and a microdeletion immediately distal to FRAXE CCG repeat. Neuroscience Letters, 2006, 397, 245-248.                                                                                                   | 1.0 | 6         |
| 288 | RLIM Is a Candidate Dosage-Sensitive Gene for Individuals with Varying Duplications of Xq13,<br>Intellectual Disability, and Distinct Facial Features. American Journal of Human Genetics, 2020, 107,<br>1157-1169.                                                             | 2.6 | 6         |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Chromatin-Binding Protein PHF6 Regulates Activity-Dependent Transcriptional Networks to Promote<br>Hunger Response. Cell Reports, 2020, 30, 3717-3728.e6.                                             | 2.9 | 6         |
| 290 | X-Linked Lissencephaly With Absent Corpus Callosum and Abnormal Genitalia. Child Neurology Open, 2017, 4, 2329048X1773862.                                                                            | 0.5 | 6         |
| 291 | SLITRK2 variants associated with neurodevelopmental disorders impair excitatory synaptic function and cognition in mice. Nature Communications, 2022, 13, .                                           | 5.8 | 6         |
| 292 | TM4SF10 gene sequencing in XLMR patients identifies common polymorphisms but no disease-associated mutation. BMC Medical Genetics, 2004, 5, 22.                                                       | 2.1 | 5         |
| 293 | Exclusion of biglycan mutations in a cohort of patients with neuromuscular disorders.<br>Neuromuscular Disorders, 2008, 18, 606-609.                                                                  | 0.3 | 5         |
| 294 | Recurrent deletion of <i>ZNF630</i> at Xp11.23 is not associated with mental retardation. American<br>Journal of Medical Genetics, Part A, 2010, 152A, 638-645.                                       | 0.7 | 5         |
| 295 | PCR Amplification and Sequence Analysis of GC-Rich Sequences: Aristaless-Related Homeobox Example.<br>Methods in Molecular Biology, 2013, 1017, 105-120.                                              | 0.4 | 5         |
| 296 | Transgenic mice with an R342X mutation in <i>Phf6</i> display clinical features of<br>Börjeson–Forssman–Lehmann Syndrome. Human Molecular Genetics, 2021, 30, 575-594.                                | 1.4 | 5         |
| 297 | Protocadherin 19 Clustering Epilepsy and Neurosteroids: Opportunities for Intervention.<br>International Journal of Molecular Sciences, 2021, 22, 9769.                                               | 1.8 | 5         |
| 298 | Identification of aSEDLgene mutation in an individual with Leber hereditary optic neuropathy and spondyloepiphyseal dysplasia. , 2004, 129A, 206-207.                                                 |     | 4         |
| 299 | Two novel intragenic variants in the FMR1 gene in patients with suspect clinical diagnosis of Fragile X syndrome and no CGG repeat expansion. European Journal of Medical Genetics, 2020, 63, 104010. | 0.7 | 4         |
| 300 | Cerebral palsy with autism and ADHD: time to pay attention. Developmental Medicine and Child Neurology, 2021, 63, 247-248.                                                                            | 1.1 | 4         |
| 301 | A 127 kb truncating deletion of PGRMC1 is a novel cause of X-linked isolated paediatric cataract.<br>European Journal of Human Genetics, 2021, 29, 1206-1215.                                         | 1.4 | 4         |
| 302 | Downregulation of the GHRH/GH/IGF-1 axis in a mouse model of Börjeson-Forssman-Lehman Syndrome.<br>Development (Cambridge), 2020, 147, .                                                              | 1.2 | 4         |
| 303 | Common data elements to standardize genomics studies in cerebral palsy. Developmental Medicine and<br>Child Neurology, 2022, 64, 1470-1476.                                                           | 1.1 | 4         |
| 304 | A novel syndrome of paediatric cataract, dysmorphism, ectodermal features, and developmental delay<br>in Australian Aboriginal family maps to 1p35.3-p36.32. BMC Medical Genetics, 2010, 11, 165.     | 2.1 | 3         |
| 305 | Developmental disorders: deciphering exomes on a grand scale. Lancet, The, 2015, 385, 1266-1267.                                                                                                      | 6.3 | 3         |
| 306 | Further delineation of BCAP31-linked intellectual disability: description of 17 new families with LoF and missense variants. European Journal of Human Genetics, 2021, 29, 1405-1417.                 | 1.4 | 3         |

| #   | Article                                                                                                                                                                                                                              | IF                | CITATIONS          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 307 | Simultaneous Screening of the FRAXA and FRAXE Loci for Rapid Detection of FMR1 CGG and/or AFF2 CCG Repeat Expansions by Triplet-Primed PCR. Journal of Molecular Diagnostics, 2021, 23, 941-951.                                     | 1.2               | 3                  |
| 308 | UPF3B Gene and Nonsense-Mediated mRNA Decay in Autism Spectrum Disorders. , 2014, , 1663-1678.                                                                                                                                       |                   | 3                  |
| 309 | Deletion ΔF508 and haplotype analysis of CFTR gene region in Slovak CF patients. Human Genetics, 1992,<br>89, 305-306.                                                                                                               | 1.8               | 2                  |
| 310 | Molecular genetics of X-linked mental retardation: a complex picture emerging. Expert Review of<br>Molecular Diagnostics, 2001, 1, 220-225.                                                                                          | 1.5               | 2                  |
| 311 | A novel genetic syndrome characterized by pediatric cataract, dysmorphism, ectodermal features, and<br>developmental delay in an indigenous Australian family. American Journal of Medical Genetics, Part A,<br>2009, 149A, 633-639. | 0.7               | 2                  |
| 312 | "Blinders, phenotype, and fashionable genetic analysisâ€: Setting the record straight for epilepsy!.<br>Epilepsia, 2011, 52, 1757-1758.                                                                                              | 2.6               | 2                  |
| 313 | Avascular necrosis of bone in childhood cancer patients: a possible role of genetic susceptibility.<br>Bratislava Medical Journal, 2015, 116, 289-295.                                                                               | 0.4               | 2                  |
| 314 | Robust imaging and gene delivery to study human lymphoblastoid cell lines. Journal of Human<br>Genetics, 2018, 63, 945-955.                                                                                                          | 1.1               | 2                  |
| 315 | Constraint and conservation of pairedâ€ŧype homeodomains predicts the clinical outcome of missense variants of uncertain significance. Human Mutation, 2020, 41, 1407-1424.                                                          | 1.1               | 2                  |
| 316 | Taql Digestion of PCR Product Increases the Informativity of St14 Vntr for the Diagnosis of Hemophilia<br>A. Disease Markers, 1993, 11, 139-141.                                                                                     | 0.6               | 1                  |
| 317 | Great expectations: using massively parallel sequencing to solve inherited disorders. Expert Review of<br>Molecular Diagnostics, 2010, 10, 833-836.                                                                                  | 1.5               | 1                  |
| 318 | New mutations and sporadic intellectual disability. Lancet, The, 2012, 380, 1630-1631.                                                                                                                                               | 6.3               | 1                  |
| 319 | Challenges of "Sticky―Co-immunoprecipitation: Polyalanine Tract Protein–Protein Interactions.<br>Methods in Molecular Biology, 2013, 1017, 121-133.                                                                                  | 0.4               | 1                  |
| 320 | Protocadherin Mutations inÂNeurodevelopmental Disorders. , 2016, , 221-231.                                                                                                                                                          |                   | 1                  |
| 321 | Integrated in silico and experimental assessment of disease relevance of <i>PCDH19</i> Âmissense<br>variants. Human Mutation, 2021, 42, 1030-1041.                                                                                   | 1.1               | 1                  |
| 322 | People with Cerebral Palsy and Their Family's Preferences about Genomics Research. Public Health<br>Genomics, 2022, 25, 22-31.                                                                                                       | 0.6               | 1                  |
| 323 | NMDâ€deficient Upf3bâ€null mice display behavioral and neuropathological defects. FASEB Journal, 2012, 26, 747.5.                                                                                                                    | 0.2               | 1                  |
| 324 | Distribution of ApoBII, MCT118 (D1S80), YNZ22 (D17S30), and COL2A1 Amp-FLPs (amplified fragment length<br>Human Gene Frequencies, 1994, 8, 121-7.                                                                                    | ) Tj ETQq0<br>0.1 | 0 0 rgBT /Ove<br>1 |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Spectrum of Neurological Phenotypes Caused by ARX Mutations. Acta Neurologica Scandinavica, 2003, 107, 432-432.                                                                                                                         | 1.0 | 0         |
| 326 | Phenotype–genotype complexities: opening DOORS. Lancet Neurology, The, 2014, 13, 24-25.                                                                                                                                                 | 4.9 | 0         |
| 327 | Cerebral Palsy: Causes, Pathways, and the Role of Genetic Variants. Obstetric Anesthesia Digest, 2016,<br>36, 185-185.                                                                                                                  | 0.0 | 0         |
| 328 | Reply. American Journal of Obstetrics and Gynecology, 2016, 214, 671.                                                                                                                                                                   | 0.7 | 0         |
| 329 | Non-Syndromic 46,XY Disorders of Sex Development. Acta Medica Martiniana, 2018, 18, 35-41.                                                                                                                                              | 0.4 | 0         |
| 330 | Different types of disease ausing noncoding variants revealed by genomic and gene expression<br>analyses in families with Xâ€linked intellectual disability. Human Mutation, 2021, 42, 835-847.                                         | 1.1 | 0         |
| 331 | Frequency of Cystic Fibrosis Mutations and Associated Haplotype Distribution in Slovak CF Patients.<br>Advances in Experimental Medicine and Biology, 1991, 290, 383-385.                                                               | 0.8 | 0         |
| 332 | Direct cDNA Selection Using Human and Mouse cDNAs: Application to Xq13.3 Chromosomal Region. ,<br>1994, , 81-90.                                                                                                                        |     | 0         |
| 333 | Developmental Abnormalities Due to Mutations in the Aristaless-Related Homeobox Gene. , 2016, , 761-766.                                                                                                                                |     | 0         |
| 334 | Frequency and distribution of deletions in dystrophin gene in Duchenne muscular dystrophy patients<br>from an east-European Slavonic population. Gene Geography: A Computerized Bulletin on Human Gene<br>Frequencies, 1991, 5, 137-40. | 0.1 | 0         |