List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6168352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZnO/Ag3PO4 and ZnO–Malachite as Effective Photocatalysts for the Removal of Enteropathogenic Bacteria, Dyestuffs, and Heavy Metals from Municipal and Industrial Wastewater. Water (Switzerland), 2021, 13, 2264.	2.7	0
2	How the Ti Precursor is Involved in the Effectiveness of Pt-TiO2 Materials in Photodegrading Methyl Orange. Revista Facultad De Ciencias Básicas, 2021, 16, 21-30.	0.2	2
3	Photocatalytic production of hydrogen and methane from glycerol reforming over Pt/TiO2–Nb2O5. International Journal of Hydrogen Energy, 2021, 46, 38678-38691.	7.1	20
4	Photocatalytic Treatment of Stained Wastewater Coming from Handicraft Factories. A Case Study at the Pilot Plant Level. Water (Switzerland), 2021, 13, 2705.	2.7	8
5	Fluorinated and Platinized Titania for Glycerol Oxidation. Materials Proceedings, 2021, 4, 37.	0.2	1
6	LaFeO3 Modified with Ni for Hydrogen Evolution via Photocatalytic Glucose Reforming in Liquid Phase. Catalysts, 2021, 11, 1558.	3.5	7
7	Role of Fe(III) in aqueous solution or deposited on ZnO surface in the photoassisted degradation of rhodamine B and caffeine. Chemosphere, 2020, 241, 125009.	8.2	18
8	Influence of Water on the Oxidation of NO on Pd/TiO2 Photocatalysts. Nanomaterials, 2020, 10, 2354.	4.1	5
9	Evaluation of Au–ZnO, ZnO/Ag2CO3 and Ag–TiO2 as Photocatalyst for Wastewater Treatment. Topics in Catalysis, 2020, 63, 1286-1301.	2.8	11
10	Fluorinated and Platinized Titania as Effective Materials in the Photocatalytic Treatment of Dyestuffs and Stained Wastewater Coming from Handicrafts Factories. Catalysts, 2019, 9, 179.	3.5	13
11	UV and visible-light driven photocatalytic removal of caffeine using ZnO modified with different noble metals (Pt, Ag and Au). Materials Research Bulletin, 2019, 112, 251-260.	5.2	81
12	A facile shape-controlled synthesis of highly photoactive fluorine containing TiO2 nanosheets with high {001} facet exposure. Journal of Materials Science, 2018, 53, 435-446.	3.7	32
13	Photo/Electrocatalytic Properties of Nanocrystalline ZnO and La–Doped ZnO: Combined DFT Fundamental Semiconducting Properties and Experimental Study. ChemistrySelect, 2018, 3, 7778-7791.	1.5	34
14	Photocatalytic removal of patent blue V dye on Au-TiO 2 and Pt-TiO 2 catalysts. Applied Catalysis B: Environmental, 2016, 188, 134-146.	20.2	130
15	Boosting the visible-light photoactivity of Bi2WO6 using acidic carbon additives. Applied Catalysis A: General, 2015, 505, 467-477.	4.3	16
16	Enhancement of stability and photoactivity of TiO2 coatings on annular glass reactors to remove emerging pollutants from waters. Chemical Engineering Journal, 2015, 279, 488-497.	12.7	43
17	Simultaneous Production of CH ₄ and H ₂ from Photocatalytic Reforming of Glucose Aqueous Solution on Sulfated Pd-TiO ₂ Catalysts. Oil and Gas Science and Technology, 2015, 70, 891-902.	1.4	31
18	Photocatalytic reduction of CO2 over platinised Bi2WO6-based materials. Photochemical and Photobiological Sciences, 2015, 14, 678-685.	2.9	39

JOSé ANTONIO NAVÃO

#	Article	IF	CITATIONS
19	Photocatalytic propylene epoxidation on Bi2WO6-based photocatalysts. Research on Chemical Intermediates, 2015, 41, 4199-4212.	2.7	7
20	Synthesis and application of layered titanates in the photocatalytic degradation of phenol. Applied Catalysis B: Environmental, 2015, 163, 23-29.	20.2	23
21	Correlation study between photo-degradation and surface adsorption properties of phenol and methyl orange on TiO2 Vs platinum-supported TiO2. Applied Catalysis B: Environmental, 2014, 150-151, 107-115.	20.2	51
22	Effect of the type of acid used in the synthesis of titania–silica mixed oxides on their photocatalytic properties. Applied Catalysis B: Environmental, 2014, 150-151, 389-395.	20.2	19
23	Hydrogen production using Pt-loaded TiO2 photocatalysts. International Journal of Hydrogen Energy, 2013, 38, 11737-11748.	7.1	66
24	Role of activated carbon on the increased photocatalytic activity of AC/Bi2WO6 coupled materials. Applied Catalysis A: General, 2013, 466, 51-59.	4.3	17
25	Efficient and affordable hydrogen production byÂwater photo-splitting using TiO2-based photocatalysts. International Journal of Hydrogen Energy, 2013, 38, 2144-2155.	7.1	101
26	Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts. Catalysis Today, 2013, 209, 164-169.	4.4	66
27	Degradation of Rhodamine B/Phenol Mixtures in Water by Sunâ€Like Excitation of a Bi ₂ WO ₆ –TiO ₂ Photocatalyst. Photochemistry and Photobiology, 2013, 89, 832-840.	2.5	29
28	In situ FT-IR study of the adsorption and photocatalytic oxidation of ethanol over sulfated and metallized TiO2. Applied Catalysis B: Environmental, 2013, 142-143, 205-213.	20.2	52
29	Preparación de Sistemas Óxido de Titanio/Óxido de Silicio (TiO2/SiO2) mediante el Método Solvotérmico para Aplicaciones en Fotocatálisis. Informacion Tecnologica (discontinued), 2013, 24, 81-92.	0.3	6
30	Gas-phase Photocatalytic Partial Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone on Au/TiO2 Photocatalysts. Journal of Advanced Oxidation Technologies, 2013, 16, .	0.5	7
31	Photocatalytic Ethanol Oxidative Dehydrogenation over Pt/TiO ₂ : Effect of the Addition of Blue Phosphors. International Journal of Photoenergy, 2012, 2012, 1-9.	2.5	23
32	Ethanol partial photoxidation on Pt/TiO2 catalysts as green route for acetaldehyde synthesis. Catalysis Today, 2012, 196, 101-109.	4.4	60
33	Insights towards the influence of Pt features on the photocatalytic activity improvement of TiO2 by platinisation. Applied Catalysis B: Environmental, 2012, 126, 76-85.	20.2	58
34	Effect of deposition of silver on structural characteristics and photoactivity of TiO2-based photocatalysts. Applied Catalysis B: Environmental, 2012, 127, 112-120.	20.2	66
35	Effect of hydrothermal treatment on structural and photocatalytic properties of TiO2 synthesized by sol–gel method. Applied Catalysis A: General, 2012, 411-412, 153-159.	4.3	32
36	Photocatalytic activity of single and mixed nanosheet-like Bi2WO6 and TiO2 for Rhodamine B degradation under sunlike and visible illumination. Applied Catalysis A: General, 2012, 423-424, 34-41.	4.3	43

#	Article	IF	CITATIONS
37	Synthesis, characterization and photocatalytic activity of Bi-doped TiO2 photocatalysts under simulated solar irradiation. Applied Catalysis A: General, 2011, , .	4.3	13
38	Influence of the strong metal support interaction effect (SMSI) of Pt/TiO2 and Pd/TiO2 systems in the photocatalytic biohydrogen production from glucose solution. Catalysis Communications, 2011, 16, 1-6.	3.3	108
39	Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation. Applied Catalysis A: General, 2011, 397, 112-120.	4.3	86
40	Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 217, 275-283.	3.9	164
41	Novel Bi2WO6–TiO2 heterostructures for Rhodamine B degradation under sunlike irradiation. Journal of Hazardous Materials, 2011, 185, 1425-1434.	12.4	87
42	Determination of the local structure of a highly dispersed Pd-Nanosystem located on a titanium dioxide carrier. Journal of Surface Investigation, 2010, 4, 636-639.	0.5	3
43	Characterisation and photocatalytic properties of titania–silica mixed oxides doped with Ag and Pt. Applied Catalysis A: General, 2010, 387, 135-140.	4.3	25
44	Photocatalytic degradation of phenolic compounds with new TiO2 catalysts. Applied Catalysis B: Environmental, 2010, 100, 346-354.	20.2	85
45	Gas phase photocatalytic oxidation of toluene using highly active Pt doped TiO2. Journal of Molecular Catalysis A, 2010, 320, 14-18.	4.8	31
46	Sunlight highly photoactive Bi2WO6–TiO2 heterostructures for rhodamine B degradation. Chemical Communications, 2010, 46, 4809.	4.1	129
47	Degradation of n-Butyl tin Chlorides in Waters. A Comparative Assessment of the Process by Photo-assisted and Chemical- treatment Methods. Journal of Advanced Oxidation Technologies, 2009, 12, .	0.5	0
48	Influence of sulfur on the structural, surface properties and photocatalytic activity of sulfated TiO2. Applied Catalysis B: Environmental, 2009, 90, 633-641.	20.2	52
49	ZnO activation by using activated carbon as a support: Characterisation and photoreactivity. Applied Catalysis A: General, 2009, 364, 174-181.	4.3	41
50	FTIR study of photocatalytic degradation of 2-propanol in gas phase with different TiO2 catalysts. Applied Catalysis B: Environmental, 2009, 89, 204-213.	20.2	63
51	Effect of Sulfate Pretreatment on Gold-Modified TiO ₂ for Photocatalytic Applications. Journal of Physical Chemistry C, 2009, 113, 12840-12847.	3.1	81
52	Titania-Supported Gold Catalysts: Comparison between the Photochemical Phenol Oxidation and Gaseous CO Oxidation Performances. Catalysis Letters, 2008, 123, 198-206.	2.6	32
53	Modification of the photocatalytic activity of Pd/TiO2 and Zn/TiO2 systems through different oxidative and reductive calcination treatments. Applied Catalysis B: Environmental, 2008, 80, 88-97.	20.2	59
54	Highly photoactive ZnO by amine capping-assisted hydrothermal treatment. Applied Catalysis B: Environmental, 2008, 83, 30-38.	20.2	70

#	Article	IF	CITATIONS
55	Influence of amine template on the photoactivity of TiO2 nanoparticles obtained by hydrothermal treatment. Applied Catalysis B: Environmental, 2008, 78, 176-182.	20.2	27
56	Study of the synergic effect of sulphate pre-treatment and platinisation on the highly improved photocatalytic activity of TiO2. Applied Catalysis B: Environmental, 2008, 81, 49-55.	20.2	34
57	Functionalisation versus mineralisation of some N-heterocyclic compounds upon UV-illumination in the presence of un-doped and iron-doped TiO2 photocatalysts. Applied Catalysis B: Environmental, 2008, 82, 225-232.	20.2	6
58	Soporte de Nuevas PelÃculas de TiO2 y TiO2/SiO2 sobre Gránulos de Poliéster para Aplicación en Fotocatálisis. Informacion Tecnologica (discontinued), 2008, 19, .	0.3	2
59	Preparation of TiO2 and TiO2/SiO2 Films on Polyester Granules for Photocatalytic Applications. Journal of Advanced Oxidation Technologies, 2007, 10, .	0.5	0
60	Photocatalytic properties of surface modified platinised TiO2: Effects of particle size and structural composition. Catalysis Today, 2007, 129, 43-49.	4.4	82
61	Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catalysis Today, 2007, 129, 50-58.	4.4	114
62	Effect of the redox treatment of Pt/TiO2 system on its photocatalytic behaviour in the gas phase selective photooxidation of propan-2-ol. Catalysis Today, 2007, 128, 235-244.	4.4	58
63	EXAFS study and photocatalytic properties of un-doped and iron-doped ZrO2-TiO2 (photo-) catalysts. Catalysis Today, 2007, 128, 245-250.	4.4	21
64	XAFS study of high-disperse Pd-containing nanosystem supported on TiO2 oxide matrix. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 575, 180-184.	1.6	3
65	The effect of dosage on the photocatalytic degradation of organic pollutants. Research on Chemical Intermediates, 2007, 33, 351-358.	2.7	19
66	Superparamagnetic Î ³ -Fe2O3 nanoclusters in silicate matrices. Inorganic Materials, 2006, 42, 377-380.	0.8	3
67	Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 20-27.	3.9	133
68	Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst. Applied Catalysis B: Environmental, 2006, 63, 45-59.	20.2	228
69	Cu-doped TiO2 systems with improved photocatalytic activity. Applied Catalysis B: Environmental, 2006, 67, 41-51.	20.2	491
70	EXAFS Study of Fe3 Interaction with ZrO2 and TiO2 Oxides. Physica Scripta, 2005, , 736.	2.5	1
71	Synthesis and textural-structural characterization of magnesia, magnesia–titania and magnesia–zirconia catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 234, 17-25.	4.7	47
72	Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu. Journal of Molecular Catalysis A, 2004, 215, 153-160.	4.8	112

#	Article	IF	CITATIONS
73	Enhancement of TiO2/C photocatalytic activity by sulfate promotion. Applied Catalysis A: General, 2004, 259, 235-243.	4.3	37
74	Title is missing!. Kinetics and Catalysis, 2003, 44, 165-174.	1.0	5
75	Title is missing!. Journal of Materials Science, 2003, 38, 2219-2222.	3.7	0
76	ACID-base properties of a CERIA-lanthana catalytic system. Journal of Thermal Analysis and Calorimetry, 2003, 72, 223-229.	3.6	6
77	Catalytic activity of a ceria-lanthana system for 4-methylpentan-2-ol dehydration. Reaction Kinetics and Catalysis Letters, 2003, 79, 93-99.	0.6	6
78	Influence of residual carbon on the photocatalytic activity of TiO2/C samples for phenol oxidation. Applied Catalysis B: Environmental, 2003, 43, 163-173.	20.2	46
79	TiO2 activation by using activated carbon as a support Part II. Photoreactivity and FTIR study. Applied Catalysis B: Environmental, 2003, 44, 153-160.	20.2	122
80	TiO2 activation by using activated carbon as a support Part I. Surface characterisation and decantability study. Applied Catalysis B: Environmental, 2003, 44, 161-172.	20.2	151
81	Photocatalytic behaviour of sulphated TiO2 for phenol degradation. Applied Catalysis B: Environmental, 2003, 45, 39-50.	20.2	118
82	XAFS study of an intermetallic TiFe0.95Zr0.03Mo0.02 system for CO2 conversion. Nuclear Instruments & Methods in Physics Research B, 2003, 199, 216-221.	1.4	0
83	Role of Fe3+/Fe2+ as TiO2 dopant ions in photocatalytic degradation of carboxylic acids. Journal of Molecular Catalysis A, 2003, 197, 157-171.	4.8	75
84	Preparation, characterisation and activity of CeO2-ZrO2 catalysts for alcohol dehydration. Journal of Molecular Catalysis A, 2003, 204-205, 629-635.	4.8	49
85	Effect of Phosphate Precursor and Organic Additives on the Structural and Catalytic Properties of Amorphous Mesoporous AlPO4Materials. Chemistry of Materials, 2003, 15, 3352-3364.	6.7	72
86	Oxidation of 6- and 8-methylquinolines upon UV-illumination in the presence of a powder of TiO2 photocatalyst. Photochemical and Photobiological Sciences, 2002, 1, 133-135.	2.9	2
87	Effect of ZrO2 incorporation and calcination temperature on the photocatalytic activity of commercial TiO2 for salicylic acid and Cr(VI) photodegradation. Applied Catalysis A: General, 2002, 231, 185-199.	4.3	54
88	Modification of the physicochemical properties of commercial TiO2 samples by soft mechanical activation. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 341-348.	3.9	43
89	A novel preparation of high surface area TiO2 nanoparticles from alkoxide precursor and using active carbon as additive. Catalysis Today, 2002, 76, 91-101.	4.4	96
90	Thermal Behaviour of a TiO2—ZrO2 Microcomposite Prepared by Chemical Coating. Magyar Apróvad Közlemények, 2002, 67, 229-238.	1.4	11

JOSé ANTONIO NAVÃO

#	Article	IF	CITATIONS
91	CeO2–La2O3 catalytic system. Part II. Acid–base properties and catalytic activity for 4-methylpentan-2-ol dehydration. Physical Chemistry Chemical Physics, 2001, 3, 2928-2934.	2.8	20
92	Preparation and Physicochemical Properties of ZrO2and Fe/ZrO2Prepared by a Solâ^'Gel Technique. Langmuir, 2001, 17, 202-210.	3.5	210
93	Influence of Carboxylic Acid on the Photocatalytic Reduction of Cr(VI) Using Commercial TiO2. Langmuir, 2001, 17, 7174-7177.	3.5	76
94	XAFS study of the structured modified oxides of titanium. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 470, 331-335.	1.6	5
95	Structural determination of the Fe-modified zirconium oxide. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 470, 341-346.	1.6	19
96	XAFS study of TiO2/SiO2 system prepared by sol–gel from inorganic precursors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 470, 347-352.	1.6	6
97	EXAFS study of the Fex/ZrO2composite nanomaterials obtained by sol–gel synthesis. Journal of Synchrotron Radiation, 2001, 8, 528-530.	2.4	3
98	Title is missing!. Catalysis Letters, 2001, 72, 11-15.	2.6	6
99	Photocatalytic deactivation of commercial TiO2 samples during simultaneous photoreduction of Cr(VI) and photooxidation of salicylic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 138, 79-85.	3.9	146
100	Mzssbauer study of carbon-supported spinel clusters catalysing oxidative decomposition of hydrogen sulphide: role of the labile surface oxygen. Surface and Interface Analysis, 2000, 30, 74-76.	1.8	8
101	Selectivity and mechanism of cumene liquid-phase oxidation in the presence of powdered mixed iron–aluminum oxides prepared by alkoxy method. Applied Catalysis A: General, 2000, 193, 237-242.	4.3	16
102	CeO2–La2O3 catalytic system. Part I. Preparation and characterisation of catalysts. Physical Chemistry Chemical Physics, 2000, 2, 4453-4459.	2.8	54
103	Iron-doped titania semiconductor powders prepared by a sol–gel method. Part I: synthesis and characterization. Applied Catalysis A: General, 1999, 177, 111-120.	4.3	153
104	Iron-doped titania powders prepared by a sol–gel method Applied Catalysis A: General, 1999, 178, 191-203.	4.3	156
105	Photocatalytic properties of ZrO2 and Fe/ZrO2 semiconductors prepared by a sol–gel technique. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 129, 89-99.	3.9	142
106	Low temperature selective methane activation to alkenes by a new hydrogen-accumulating system. Chemical Communications, 1999, , 943-944.	4.1	4
107	Structure, texture, acidity and catalytic performance of AlPO4-caesium oxide catalysts in 2-methyl-3-butyn-2-ol conversion. Journal of Materials Chemistry, 1999, 9, 827-835.	6.7	14
108	A laser flash photolysis study of the photochemical activity of a synthesised ZrTiO4. Materials Letters, 1999, 39, 370-373.	2.6	14

#	Article	IF	CITATIONS
109	Study of the Initiation Route of Cumene Liquid-Phase Oxidation over Ironâ^'Aluminum Oxide Catalysts Obtained by the Alkoxy Method. Langmuir, 1999, 15, 463-468.	3.5	8
110	Transformation of CO2Alone and Combined with Ethanol Present in the Hydrogen-Accumulating Intermetallic System TiFe0.95Zr0.03Mo0.02, Pd/SiO2, and γ-Al2O3. Langmuir, 1999, 15, 6601-6604.	3.5	7
111	Structure, Texture, Surface Acidity, and Catalytic Activity of AlPO4–ZrO2(5–50 wt% ZrO2) Catalysts Prepared by a Sol–Gel Procedure. Journal of Catalysis, 1998, 179, 483-494.	6.2	38
112	Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method. Applied Catalysis B: Environmental, 1998, 16, 187-196.	20.2	143
113	Structure and texture of AlPO4-cesium oxide (20 wt.%) catalysts obtained by impregnation with cesium chloride. Reaction Kinetics and Catalysis Letters, 1998, 65, 245-251.	0.6	2
114	Catalytic properties of sulfated and non-sulfated ZrO2–SiO2: effects of the sulfation submitted before or after the calcination process, in the cyclohexene isomerization reaction. Journal of Molecular Catalysis A, 1998, 135, 155-162.	4.8	8
115	Synthesis, structure and catalytic activity of CUO/TiO2 mixed oxides obtained by alkoxo-methods in CO oxidation. Studies in Surface Science and Catalysis, 1998, , 679-689.	1.5	5
116	Structural and Textural Characterization of AIPO4–B2O3and Al2O3–B2O3(5–30 wt% B2O3) Systems Obtained by Boric Acid Impregnation. Journal of Catalysis, 1998, 173, 333-344.	6.2	50
117	Photoassisted Degradation (in the UV) of Phenyltin(IV) Chlorides in the Presence of Titanium Dioxide. Langmuir, 1998, 14, 388-395.	3.5	24
118	Effects of H2O2and SO42-Species on the Crystalline Structure and Surface Properties of ZrO2Processed by Alkaline Precipitation. Chemistry of Materials, 1997, 9, 1256-1261.	6.7	41
119	Cumene Photo-oxidation over Powder TiO2 Catalyst. Langmuir, 1997, 13, 2373-2379.	3.5	19
120	Title is missing!. Journal of Sol-Gel Science and Technology, 1997, 10, 165-175.	2.4	11
121	Influence of the nature of iron, aluminium and yttrium organometallic nanocluster precursors on the formation mechanism of ceramic ZrO2 obtained by sol-gel method. Journal of Sol-Gel Science and Technology, 1997, 8, 213-221.	2.4	5
122	UV-photoassisted degradation of phenyltin(IV) chlorides in water. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 59-63.	3.9	11
123	Photoconductive and photocatalytic properties of ZrTiO4. Comparison with the parent oxides TiO2 and ZrO2. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 179-185.	3.9	69
124	Photoassisted Degradation ofn-Butyltin Chlorides in Air-Equilibrated Aqueous TiO2Suspension. Langmuir, 1996, 12, 2007-2014.	3.5	16
125	Catalytic Properties of ZrO2–SiO2: Effects of Sulfation in the Cyclohexene Isomerization Reaction. Journal of Catalysis, 1996, 161, 605-613.	6.2	27
126	Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron(III) acetylacetonate. Journal of Molecular Catalysis A, 1996, 106, 267-276.	4.8	142

#	Article	IF	CITATIONS
127	ZrO2î—,SiO2 mixed oxides: surface aspects, photophysical properties and photoreactivity for 4-nitrophenol oxidation in aqueous phase. Journal of Molecular Catalysis A, 1996, 109, 239-248.	4.8	31
128	Photo-induced Transformation, upon UV Illumination in Air, of Hyponitrite SpeciesN2O22- Preadsorbed onTiO2 Surface. Surface and Interface Analysis, 1996, 24, 355-359.	1.8	52
129	Photocatalytic properties of iron-doped titania semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 98, 171-181.	3.9	405
130	Partial or complete heterogeneous photocatalytic oxidation of neat toluene and 4-picoline in liquid organic oxygenated dispersions containing pure or iron-doped titania photocatalysts. Journal of Molecular Catalysis A, 1996, 104, 329-339.	4.8	35
131	Modification of the Activity of Mg3(PO4)2 in the Gas-Phase Conversion of Cyclohexanol by Addition of Sodium-Carbonate. Journal of Catalysis, 1995, 157, 97-108.	6.2	28
132	Effect of preparation method on the surface acidity and catalytic performance of iron orthophosphates in cyclohexene conversion. Journal of Materials Chemistry, 1995, 5, 2019.	6.7	8
133	Heterogeneous Photocatalytic Oxidation of Liquid Isopropanol by TiO2, ZrO2 and ZrTiO4 Powders. Studies in Surface Science and Catalysis, 1994, , 721-728.	1.5	13
134	Kinetic study of zirconia crystallization from amorphous ZrO2-SiO2 composite precursors processed by sol-gel chemistry. Journal of Sol-Gel Science and Technology, 1994, 2, 353-357.	2.4	5
135	Identification of the fixed nitrogen containing species during the photo-oxidative fixation of molecular nitrogen on UV-illuminated TiO2 surfaces. Surface and Interface Analysis, 1994, 22, 417-420.	1.8	4
136	Combined use of XPS, IR and EDAX techniques for the characterization of ZrO2-SiO2 powders prepared by a sol-gel process. Applied Surface Science, 1994, 81, 325-329.	6.1	26
137	Heterogeneous photocatalytic oxidation of nitrite over iron-doped TiO2 samples. Journal of Molecular Catalysis, 1994, 87, 67-74.	1.2	38
138	Comparison of the photocatalytic efficiency of TiO2, iron oxides and mixed Ti(IV)î—,Fe(III) oxides: photodegradation of oligocarboxylic acids. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 84, 183-193.	3.9	99
139	UV photolytic degradation of phenylmercury compounds in water-acetonitrile (1:1) media. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 84, 299-303.	3.9	4
140	Fluoride and Sulfate Treatment of AlPO4-Al2O3 Catalysts .l. Structure, Texture, Surface Acidity and Catalytic Performance in Cyclohexene Conversion and Cumene Cracking. Journal of Catalysis, 1994, 145, 107-125.	6.2	51
141	Fluoride treatment of AlPO4-Al2O3 catalysts. II. Poisoning experiments by bases for cyclohexene conversion and cumene cracking. Catalysis Letters, 1994, 24, 293-301.	2.6	7
142	Thermal evolution of TiO2î—,ZrO2 composites prepared by chemical coating processing. Materials Letters, 1994, 20, 339-344.	2.6	8
143	Effects of sulfation on the crystallization and textural properties of processed ZrO2. Materials Letters, 1994, 20, 345-349.	2.6	5
144	AlPO4–Al2O3catalysts with low alumina content. Part IV.—Effect of fluoride ion addition on texture, surface acidity and catalytic performance in cyclohexene and cumene conversions. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2265-2275.	1.7	17

#	Article	IF	CITATIONS
145	Surface characterization of ZrO2-SiO2 systems prepared by a sol-gel method. Applied Surface Science, 1993, 70-71, 226-229.	6.1	19
146	Anion treatment (Fâ^' or SO42â^') of AlPO4-Al2O3 (25 wt% Al2O3) catalysts. Applied Catalysis A: General, 1993, 99, 161-173.	4.3	22
147	Surface characterization of zirconium titanate (ZrTiO4) powder by measurements of electrical photoconductance and photoassisted oxygen isotope exchange. Catalysis Letters, 1993, 20, 251-258.	2.6	10
148	UV photolytic degradation of butyltin chlorides in water. Journal of Photochemistry and Photobiology A: Chemistry, 1993, 71, 97-102.	3.9	34
149	Thermal evolution of (Zr,Ti)O2 gels synthesized at different basicpH. Journal of Thermal Analysis, 1993, 40, 1095-1102.	0.6	5
150	Kinetic study of crystallization in zirconium titanate from an amorphous reactive prepared precursor. Journal of Non-Crystalline Solids, 1992, 147-148, 262-265.	3.1	7
151	Bulk and surface characterization of powder iron-doped titania photocatalysts. Journal of Materials Science, 1992, 27, 3036-3042.	3.7	94
152	Formation of zirconium titanate powder from a sol-gel prepared reactive precursor. Journal of Materials Science, 1992, 27, 2463-2467.	3.7	65
153	On the influence of chemical processing in the crystallization behaviour of zirconium titanate materials. Journal of Materials Science Letters, 1992, 11, 1570-1572.	0.5	27
154	Thermal decomposition of sodium nitrite and sodium nitrate pre-adsorbed on TiO2 surfaces. Journal of Thermal Analysis, 1992, 38, 673-682.	0.6	7
155	Photo-oxidative fixation of molecular nitrogen on TiO2 (rutile) surfaces: the nature of the adsorbed nitrogen-containing species. Surface Science, 1991, 251-252, 1052-1056.	1.9	12
156	A laser flash photolysis study of the reduction of methyl viologen by conduction band electrons of TiO2 and Feî—,Ti oxide photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 1991, 55, 319-322.	3.9	42
157	Remarks on "Effects of surface modification with silicon oxides on the photochemical properties of powdered titania". Langmuir, 1990, 6, 1525-1526.	3.5	2
158	Oxidation of 2-furoic acid via singlet oxygen generated photochemically. Journal of Photochemistry and Photobiology A: Chemistry, 1990, 52, 91-95.	3.9	16
159	Photocatalytic treatment based on TiO2 for a coal mining drainage. Revista Facultad De IngenierÃa, 0, , .	0.5	1