## Johann M Rohwer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/616820/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | BioSimulators: a central registry of simulation engines and services for recommending specific tools.<br>Nucleic Acids Research, 2022, 50, W108-W114.                                             | 6.5 | 11        |
| 2  | Coupling kinetic models and advection–diffusion equations. 1. Framework development and application to sucrose translocation and metabolism in sugarcane. In Silico Plants, 2021, 3, .            | 0.8 | 5         |
| 3  | Coupling kinetic models and advection–diffusion equations. 2. Sensitivity analysis of an advection–diffusion–reaction model. In Silico Plants, 2021, 3, .                                         | 0.8 | 2         |
| 4  | Functional Characterisation of Three Glycine N-Acyltransferase Variants and the Effect on Glycine<br>Conjugation to Benzoyl–CoA. International Journal of Molecular Sciences, 2021, 22, 3129.     | 1.8 | 4         |
| 5  | Manganese privation induced transcriptional upregulation of the class IIa bacteriocin plantaricin 423 in Lactobacillus plantarum 423. Applied and Environmental Microbiology, 2021, 87, e0097621. | 1.4 | 4         |
| 6  | The thioredoxin redox potential and redox charge are surrogate measures for flux in the thioredoxin system. Archives of Biochemistry and Biophysics, 2020, 680, 108231.                           | 1.4 | 7         |
| 7  | Effect of Drought on the Methylerythritol 4-Phosphate (MEP) Pathway in the Isoprene Emitting<br>Conifer Picea glauca. Frontiers in Plant Science, 2020, 11, 546295.                               | 1.7 | 27        |
| 8  | <scp>SBML</scp> Level 3: an extensible format for the exchange and reuse of biological models.<br>Molecular Systems Biology, 2020, 16, e9110.                                                     | 3.2 | 178       |
| 9  | Workflow for Data Analysis in Experimental and Computational Systems Biology: Using Python as<br>â€~Glue'. Processes, 2019, 7, 460.                                                               | 1.3 | 6         |
| 10 | Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis. Microbial Cell Factories, 2019, 18, 192.                         | 1.9 | 42        |
| 11 | STRENDA DB: enabling the validation and sharing of enzyme kinetics data. FEBS Journal, 2018, 285, 2193-2204.                                                                                      | 2.2 | 38        |
| 12 | PySCeSToolbox: a collection of metabolic pathway analysis tools. Bioinformatics, 2018, 34, 124-125.                                                                                               | 1.8 | 20        |
| 13 | Delving deeper: Relating the behaviour of a metabolic system to the properties of its components using symbolic metabolic control analysis. PLoS ONE, 2018, 13, e0207983.                         | 1.1 | 2         |
| 14 | An empirical analysis of enzyme function reporting for experimental reproducibility:<br>Missing/incomplete information in published papers. Biophysical Chemistry, 2018, 242, 22-27.              | 1.5 | 19        |
| 15 | Quantitative measures for redox signaling. Free Radical Biology and Medicine, 2016, 96, 290-303.                                                                                                  | 1.3 | 28        |
| 16 | Identifying the conditions necessary for the thioredoxin ultrasensitive response. Perspectives in Science, 2016, 9, 53-59.                                                                        | 0.6 | 8         |
| 17 | An Annual and Seasonal Characterisation of Winery Effluent in South Africa. South African Journal of Enology and Viticulture, 2016, 32, .                                                         | 0.8 | 6         |
| 18 | Tracing regulatory routes in metabolism using generalised supply-demand analysis. BMC Systems Biology, 2015, 9, 89.                                                                               | 3.0 | 10        |

Johann M Rohwer

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The glutaredoxin mono- and di-thiol mechanisms for deglutathionylation are functionally equivalent:<br>implications for redox systems biology. Bioscience Reports, 2015, 35, .                     | 1.1 | 24        |
| 20 | Incorporating covalent and allosteric effects into rate equations: the case of muscle glycogen synthase. Biochemical Journal, 2014, 462, 525-537.                                                  | 1.7 | 3         |
| 21 | Potency of progestogens used in hormonal therapy: Toward understanding differential actions.<br>Journal of Steroid Biochemistry and Molecular Biology, 2014, 142, 39-47.                           | 1.2 | 54        |
| 22 | Deoxyxylulose 5-Phosphate Synthase Controls Flux through the Methylerythritol 4-Phosphate<br>Pathway in Arabidopsis. Plant Physiology, 2014, 165, 1488-1504.                                       | 2.3 | 154       |
| 23 | Standards for Reporting Enzyme Data: The STRENDA Consortium: What it aims to do and why it should be helpful. Perspectives in Science, 2014, 1, 131-137.                                           | 0.6 | 65        |
| 24 | Applications of Kinetic Modeling to Plant Metabolism. Methods in Molecular Biology, 2014, 1083, 275-286.                                                                                           | 0.4 | 3         |
| 25 | From Top-Down to Bottom-Up: Computational Modeling Approaches for Cellular Redoxin Networks.<br>Antioxidants and Redox Signaling, 2013, 18, 2075-2086.                                             | 2.5 | 39        |
| 26 | A generic rate equation for catalysed, templateâ€directed polymerisation. FEBS Letters, 2013, 587, 2868-2875.                                                                                      | 1.3 | 9         |
| 27 | Regulation of glycogen synthase from mammalian skeletal muscle – a unifying view of allosteric and covalent regulation. FEBS Journal, 2013, 280, 2-27.                                             | 2.2 | 39        |
| 28 | Impact of Glucocorticoid Receptor Density on Ligand-Independent Dimerization, Cooperative<br>Ligand-Binding and Basal Priming of Transactivation: A Cell Culture Model. PLoS ONE, 2013, 8, e64831. | 1.1 | 43        |
| 29 | Reuteran and levan as carbohydrate sinks in transgenic sugarcane. Planta, 2012, 236, 1803-1815.                                                                                                    | 1.6 | 4         |
| 30 | Determining Enzyme Kinetics for Systems Biology with Nuclear Magnetic Resonance Spectroscopy.<br>Metabolites, 2012, 2, 818-843.                                                                    | 1.3 | 20        |
| 31 | Technical note On modifying the Arrhenius equation to compensate for temperature changes for reactions within biological systems. Water S A, 2012, 38, .                                           | 0.2 | 13        |
| 32 | Kinetic modelling of plant metabolic pathways. Journal of Experimental Botany, 2012, 63, 2275-2292.                                                                                                | 2.4 | 87        |
| 33 | From steadyâ€state to synchronized yeast glycolytic oscillations I: model construction. FEBS Journal, 2012, 279, 2810-2822.                                                                        | 2.2 | 30        |
| 34 | Supply–Demand Analysis. Methods in Enzymology, 2011, 500, 533-554.                                                                                                                                 | 0.4 | 21        |
| 35 | The logic of kinetic regulation in the thioredoxin system. BMC Systems Biology, 2011, 5, 15.                                                                                                       | 3.0 | 39        |
| 36 | Kinetic and Thermodynamic Aspects of Enzyme Control and Regulation. Journal of Physical Chemistry B, 2010, 114, 16280-16289.                                                                       | 1.2 | 27        |

3

JOHANN M ROHWER

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A large-scale protein-function database. Nature Chemical Biology, 2010, 6, 785-785.                                                                                                     | 3.9 | 22        |
| 38 | Network Analysis of Enzyme Activities and Metabolite Levels and Their Relationship to Biomass in a<br>Large Panel of <i>Arabidopsis</i> Accessions  Â. Plant Cell, 2010, 22, 2872-2893. | 3.1 | 131       |
| 39 | Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in <i>Arabidopsis</i> . Molecular Systems Biology, 2009, 5, 314.                                           | 3.2 | 276       |
| 40 | Control of specific growth rate in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2009, 155, 1699-1707.                                                                       | 0.7 | 32        |
| 41 | Enzymes or redox couples? The kinetics of thioredoxin and glutaredoxin reactions in a systems biology context. Biochemical Journal, 2009, 417, 269-277.                                 | 1.7 | 25        |
| 42 | Identifying and characterising regulatory metabolites with generalised supply–demand analysis.<br>Journal of Theoretical Biology, 2008, 252, 546-554.                                   | 0.8 | 22        |
| 43 | Approximations and their consequences for dynamic modelling of signal transduction pathways.<br>Mathematical Biosciences, 2007, 207, 40-57.                                             | 0.9 | 35        |
| 44 | Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phytochemistry, 2007, 68, 2375-2392.                                                                           | 1.4 | 103       |
| 45 | Is there an optimal ribosome concentration for maximal protein production?. IET Systems Biology, 2006, 153, 398.                                                                        | 2.0 | 2         |
| 46 | Editorial: 12th BTK Meeting: â€~Systems Biology: redefining BioThermoKinetics'. IET Systems Biology, 2006,<br>153, 312.                                                                 | 2.0 | 1         |
| 47 | Conditions for effective allosteric feedforward and feedback in metabolic pathways. IET Systems<br>Biology, 2006, 153, 327.                                                             | 2.0 | 4         |
| 48 | Comparing the regulatory behaviour of two cooperative, reversible enzyme mechanisms. IET Systems<br>Biology, 2006, 153, 335.                                                            | 2.0 | 3         |
| 49 | Summation theorems for flux and concentration control coefficients of dynamic systems. IET Systems Biology, 2006, 153, 314.                                                             | 2.0 | 10        |
| 50 | Evaluation of a simplified generic bi-substrate rate equation for computational systems biology. IET<br>Systems Biology, 2006, 153, 338.                                                | 2.0 | 23        |
| 51 | Experimental evidence for allosteric modifier saturation as predicted by the bi-substrate Hill equation. IET Systems Biology, 2006, 153, 342.                                           | 2.0 | 5         |
| 52 | Software tools that facilitate kinetic modelling with large data sets: an example using growth modelling in sugarcane. IET Systems Biology, 2006, 153, 385.                             | 2.0 | 1         |
| 53 | Modelling cellular systems with PySCeS. Bioinformatics, 2005, 21, 560-561.                                                                                                              | 1.8 | 152       |
| 54 | Detailed Kinetic Models Using Metabolomics Data Sets. , 2005, , 215-242.                                                                                                                |     | 0         |

4

Johann M Rohwer

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Partial purification and characterisation of sucrose synthase in sugarcane. Journal of Plant<br>Physiology, 2005, 162, 11-20.                                                                                        | 1.6 | 27        |
| 56 | A kinetic study of sugarcane sucrose synthase. FEBS Journal, 2004, 271, 3971-3977.                                                                                                                                   | 0.2 | 22        |
| 57 | Protein-level expression and localization of sucrose synthase in the sugarcane culm. Physiologia<br>Plantarum, 2004, 121, 187-195.                                                                                   | 2.6 | 33        |
| 58 | Metabolic Control Analysis of Glycerol Synthesis in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2002, 68, 4448-4456.                                                                           | 1.4 | 107       |
| 59 | Regulatory design and function in metabolism. Biochemical Society Transactions, 2002, 30, A5-A5.                                                                                                                     | 1.6 | 0         |
| 60 | How to distinguish between the vacuum cleaner and flippase mechanisms of the lmrA multi-drug transporter in Lactococcus lactis. Molecular Biology Reports, 2002, 29, 107-112.                                        | 1.0 | 4         |
| 61 | Modelling cellular processes with Python and Scipy. Molecular Biology Reports, 2002, 29, 249-254.                                                                                                                    | 1.0 | 18        |
| 62 | Experimental supply-demand analysis of anaerobic yeast energy metabolism. Molecular Biology<br>Reports, 2002, 29, 203-209.                                                                                           | 1.0 | 8         |
| 63 | ThermoKinetic modelling. Membrane potential as a dependent variable in ion transport processes.<br>Molecular Biology Reports, 2002, 29, 217-225.                                                                     | 1.0 | 3         |
| 64 | ECA: control in ecosystems. Molecular Biology Reports, 2002, 29, 113-117.                                                                                                                                            | 1.0 | 3         |
| 65 | Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data.<br>Biochemical Journal, 2001, 358, 437.                                                                               | 1.7 | 89        |
| 66 | Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data.<br>Biochemical Journal, 2001, 358, 437-445.                                                                           | 1.7 | 132       |
| 67 | Understanding Glucose Transport by the Bacterial Phosphoenolpyruvate:Glycose Phosphotransferase<br>System on the Basis of Kinetic Measurements in Vitro. Journal of Biological Chemistry, 2000, 275,<br>34909-34921. | 1.6 | 115       |
| 68 | An Integrated Approach to the Analysis of the Control and Regulation of Cellular Systems. , 2000, , 73-79.                                                                                                           |     | 2         |
| 69 | Putting the Cart before the Horse: Designing a Metabolic System in order to Understand it. , 2000, ,<br>299-308.                                                                                                     |     | 0         |
| 70 | Moiety Conservation and Flux Enhancement. , 2000, , 27-32.                                                                                                                                                           |     | 0         |
| 71 | Subtleties in control by metabolic channelling and enzyme organization. Molecular and Cellular Biochemistry, 1998, 184, 311-320.                                                                                     | 1.4 | 14        |
| 72 | Limits to inducer exclusion: inhibition of the bacterial phosphotransferase system by glycerol kinase.<br>Molecular Microbiology, 1998, 29, 641-652.                                                                 | 1.2 | 15        |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Implications of macromolecular crowding for signal transduction and metabolite channeling.<br>Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10547-10552. | 3.3 | 102       |
| 74 | Subtleties in control by metabolic channelling and enzyme organization. , 1998, , 311-320.                                                                                                            |     | 4         |
| 75 | Changes in the Cellular Energy State Affect the Activity of the Bacterial Phosphotransferase System.<br>FEBS Journal, 1996, 235, 225-230.                                                             | 0.2 | 18        |
| 76 | How to Recognize Monofunctional Units in a Metabolic System. Journal of Theoretical Biology, 1996,<br>179, 213-228.                                                                                   | 0.8 | 58        |
| 77 | Direct Transfer of Control and Multidrug Resistance. , 1996, , 283-292.                                                                                                                               |     | 3         |
| 78 | Energy, control and DNA structure in the living cell. Biophysical Chemistry, 1995, 55, 153-165.                                                                                                       | 1.5 | 12        |
| 79 | HIERARCHIES IN CONTROL. Journal of Biological Systems, 1995, 03, 139-144.                                                                                                                             | 0.5 | 5         |
| 80 | Composite control of cell function: metabolic pathways behaving as single control units. FEBS<br>Letters, 1995, 368, 1-4.                                                                             | 1.3 | 33        |
| 81 | Taking enzyme kinetics out of control; putting control into regulation. FEBS Journal, 1993, 212, 833-837.                                                                                             | 0.2 | 80        |