Gary H Perdew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/616795/publications.pdf

Version: 2024-02-01

131 11,404 55 104
papers citations h-index g-index

132 132 132 11294 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Multi-Omics Strategies for Investigating the Microbiome in Toxicology Research. Toxicological Sciences, 2022, 187, 189-213.	1.4	6
2	The Enigma of AHR Activation in the Skin: Interplay among Ligands, Metabolism, and Bioavailability. Journal of Investigative Dermatology, 2021, 141, 1385-1388.	0.3	12
3	The aryl hydrocarbon receptor activates ceramide biosynthesis in mice contributing to hepatic lipogenesis. Toxicology, 2021, 458, 152831.	2.0	12
4	The aryl hydrocarbon receptor at the forefront of hostâ€microbe interactions in the skin: A perspective on current knowledge gaps and directions for future research and therapeutic applications. Experimental Dermatology, 2021, 30, 1477-1483.	1.4	18
5	Selective Ah receptor modulators attenuate NPC1L1-mediated cholesterol uptake through repression of SREBP-2 transcriptional activity. Laboratory Investigation, 2020, 100, 250-264.	1.7	10
6	PCB126 blocks the thermogenic beiging response of adipocytes. Environmental Science and Pollution Research, 2020, 27, 8897-8904.	2.7	8
7	Metatranscriptomic Analysis of the Mouse Gut Microbiome Response to the Persistent Organic Pollutant 2,3,7,8-Tetrachlorodibenzofuran. Metabolites, 2020, 10, 1.	1.3	55
8	Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity. Gut Microbes, 2020, 12, 1788899.	4.3	123
9	How Ah Receptor Ligand Specificity Became Important in Understanding Its Physiological Function. International Journal of Molecular Sciences, 2020, 21, 9614.	1.8	29
10	\hat{l}^2 -Naphthoflavone Activation of the Ah Receptor Alleviates Irradiation-Induced Intestinal Injury in Mice. Antioxidants, 2020, 9, 1264.	2.2	9
11	The aryl hydrocarbon receptor as a mediator of host-microbiota interplay. Gut Microbes, 2020, 12, 1859812.	4.3	59
12	Targeting the pregnane X receptor using microbial metabolite mimicry. EMBO Molecular Medicine, 2020, 12, e11621.	3.3	53
13	Activation of the Ah Receptor Modulates Gastrointestinal Homeostasis and the Intestinal Microbiome. Current Pharmacology Reports, 2019, 5, 319-331.	1.5	9
14	Isolation and Identification of Aryl Hydrocarbon Receptor Modulators in White Button Mushrooms (<i>Agaricus bisporus</i>). Journal of Agricultural and Food Chemistry, 2019, 67, 9286-9294.	2.4	6
15	Selective Ah Receptor Ligands Mediate Enhanced SREBP1 Proteolysis to Restrict Lipogenesis in Sebocytes. Toxicological Sciences, 2019, 171, 146-158.	1.4	11
16	Microbiota Metabolism Promotes Synthesis of the Human Ah Receptor Agonist 2,8-Dihydroxyquinoline. Journal of Proteome Research, 2019, 18, 1715-1724.	1.8	21
17	Metabolomics Reveals Aryl Hydrocarbon Receptor Activation Induces Liver and Mammary Gland Metabolic Dysfunction in Lactating Mice. Journal of Proteome Research, 2018, 17, 1375-1382.	1.8	9
18	Allelic variants of the aryl hydrocarbon receptor differentially influence UVB-mediated skin inflammatory responses in SKH1 mice. Toxicology, 2018, 394, 27-34.	2.0	7

#	Article	IF	Citations
19	Urolithin A Is a Dietary Microbiota-Derived Human Aryl Hydrocarbon Receptor Antagonist. Metabolites, 2018, 8, 86.	1.3	59
20	Structural and Functional Analysis of the Gut Microbiome for Toxicologists. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2018, 78, e54.	1.1	6
21	Molecular Regulation of Carcinogenesis: Friend and Foe. Toxicological Sciences, 2018, 165, 277-283.	1.4	34
22	Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor. Toxicology and Applied Pharmacology, 2017, 323, 74-80.	1.3	41
23	Ligand activation of the Ah receptor contributes to gastrointestinal homeostasis. Current Opinion in Toxicology, 2017, 2, 15-23.	2.6	58
24	Assessment of Ah receptor transcriptional activity mediated by halogenated dibenzo- <i>p</i> dioxins and dibenzofurans (PXDD/Fs) in human and mouse cell systems. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 1295-1302.	0.9	6
25	Ligand-mediated cytoplasmic retention of the Ah receptor inhibits macrophage-mediated acute inflammatory responses. Laboratory Investigation, 2017, 97, 1471-1487.	1.7	14
26	Dietary broccoli impacts microbial community structure and attenuates chemically induced colitis in mice in an Ah receptor dependent manner. Journal of Functional Foods, 2017, 37, 685-698.	1.6	62
27	Editor's Highlight: Ah Receptor Activation Potentiates Neutrophil Chemoattractant (C-X-C Motif) Ligand 5 Expression in Keratinocytes and Skin. Toxicological Sciences, 2017, 160, 83-94.	1.4	25
28	Hepatic Aryl Hydrocarbon Receptor Attenuates Fibroblast Growth Factor 21 Expression. Journal of Biological Chemistry, 2016, 291, 15378-15387.	1.6	30
29	Divergent Ah Receptor Ligand Selectivity during Hominin Evolution. Molecular Biology and Evolution, 2016, 33, 2648-2658.	3.5	60
30	Expression of the aryl hydrocarbon receptor contributes to the establishment of intestinal microbial community structure in mice. Scientific Reports, 2016, 6, 33969.	1.6	54
31	A novel AhR ligand, 2AI, protects the retina from environmental stress. Scientific Reports, 2016, 6, 29025.	1.6	21
32	Regulation of Cytochrome P450 2B10 (CYP2B10) Expression in Liver by Peroxisome Proliferator-activated Receptor- \hat{l}^2/\hat{l}' Modulation of SP1 Promoter Occupancy. Journal of Biological Chemistry, 2016, 291, 25255-25263.	1.6	15
33	Selective programming of CCR10+ innate lymphoid cells in skin-draining lymph nodes for cutaneous homeostatic regulation. Nature Immunology, 2016, 17, 48-56.	7.0	37
34	Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Scientific Reports, 2015, 5, 12689.	1.6	274
35	Persistent Organic Pollutants Modify Gut Microbiota–Host Metabolic Homeostasis in Mice Through Aryl Hydrocarbon Receptor Activation. Environmental Health Perspectives, 2015, 123, 679-688.	2.8	262
36	Differential Regulation of Th17 and T Regulatory Cell Differentiation by Aryl Hydrocarbon Receptor Dependent Xenobiotic Response Element Dependent and Independent Pathways. Toxicological Sciences, 2015, 145, 233-243.	1.4	41

#	Article	IF	CITATIONS
37	Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice. Environmental Science & Environmental Science & 2015, 49, 8067-8077.	4.6	80
38	Genetic and Pharmacological Analysis Identifies a Physiological Role for the AHR in Epidermal Differentiation. Journal of Investigative Dermatology, 2015, 135, 1320-1328.	0.3	86
39	Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation. Drug Metabolism and Disposition, 2015, 43, 1522-1535.	1.7	434
40	Aryl Hydrocarbon Receptor Activation Synergistically Induces Lipopolysaccharide-Mediated Expression of Proinflammatory Chemokine (c–c motif) Ligand 20. Toxicological Sciences, 2015, 148, 229-240.	1.4	29
41	Modulation of aryl hydrocarbon receptor (AHR)-dependent signaling by peroxisome proliferator-activated receptor \hat{l}^2/\hat{l} (PPAR \hat{l}^2/\hat{l}) in keratinocytes. Carcinogenesis, 2014, 35, 1602-1612.	1.3	24
42	The Ah receptor regulates growth factor expression in head and neck squamous cell carcinoma cell lines. Molecular Carcinogenesis, 2014, 53, 765-776.	1.3	47
43	Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nature Reviews Cancer, 2014, 14, 801-814.	12.8	653
44	<i>In vivo</i> effects of the pure aryl hydrocarbon receptor antagonist <scp>GNF</scp> â€351 after oral administration are limited to the gastrointestinal tract. British Journal of Pharmacology, 2014, 171, 1735-1746.	2.7	28
45	Aryl Hydrocarbon Receptor Antagonism Attenuates Growth Factor Expression, Proliferation, and Migration in Fibroblast-Like Synoviocytes from Patients with Rheumatoid Arthritis. Journal of Pharmacology and Experimental Therapeutics, 2014, 348, 236-245.	1.3	40
46	A Structural Switch between Agonist and Antagonist Bound Conformations for a Ligand-Optimized Model of the Human Aryl Hydrocarbon Receptor Ligand Binding Domain. Biology, 2014, 3, 645-669.	1.3	45
47	Aryl hydrocarbon receptor antagonism mitigates cytokine-mediated inflammatory signalling in primary human fibroblast-like synoviocytes. Annals of the Rheumatic Diseases, 2013, 72, 1708-1716.	0.5	43
48	Role of the Ah Receptor in Homeostatic Control of Fatty Acid Synthesis in the Liver. Toxicological Sciences, 2012, 129, 372-379.	1.4	63
49	Ah Receptor Antagonism Represses Head and Neck Tumor Cell Aggressive Phenotype. Molecular Cancer Research, 2012, 10, 1369-1379.	1.5	59
50	Selective Aryl Hydrocarbon Receptor Modulator-Mediated Repression of CD55 Expression Induced by Cytokine Exposure. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 345-355.	1.3	15
51	Aryl hydrocarbon receptor regulates the cholesterol biosynthetic pathway in a dioxin response element-independent manner. Hepatology, 2012, 55, 1994-2004.	3.6	81
52	Distinct Roles for Aryl Hydrocarbon Receptor Nuclear Translocator and Ah Receptor in Estrogen-Mediated Signaling in Human Cancer Cell Lines. PLoS ONE, 2012, 7, e29545.	1.1	39
53	Ah receptor antagonism inhibits constitutive and cytokine inducible IL6 production in head and neck tumor cell lines. Molecular Carcinogenesis, 2011, 50, 173-183.	1.3	55
54	Xenobiotic Metabolism, Disposition, and Regulation by Receptors: From Biochemical Phenomenon to Predictors of Major Toxicities. Toxicological Sciences, 2011, 120, S49-S75.	1.4	294

#	Article	IF	Citations
55	Suppression of Cytokine-Mediated Complement Factor Gene Expression through Selective Activation of the Ah Receptor with 3′,4′-Dimethoxy-α-naphthoflavone. Molecular Pharmacology, 2011, 79, 508-519.	1.0	46
56	Identification of a High-Affinity Ligand That Exhibits Complete Aryl Hydrocarbon Receptor Antagonism. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 318-327.	1.3	82
57	Aryl Hydrocarbon Receptor Antagonists Promote the Expansion of Human Hematopoietic Stem Cells. Science, 2010, 329, 1345-1348.	6.0	904
58	Protein function analysis: rapid, cell-based siRNA-mediated ablation of endogenous expression with simultaneous ectopic replacement. Cytotechnology, 2010, 62, 95-100.	0.7	5
59	Antagonism of Aryl Hydrocarbon Receptor Signaling by 6,2′,4′-Trimethoxyflavone. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 135-144.	1.3	55
60	Evidence for Ligand-Mediated Selective Modulation of Aryl Hydrocarbon Receptor Activity. Molecular Pharmacology, 2010, 77, 247-254.	1.0	83
61	Kynurenic Acid Is a Potent Endogenous Aryl Hydrocarbon Receptor Ligand that Synergistically Induces Interleukin-6 in the Presence of Inflammatory Signaling. Toxicological Sciences, 2010, 115, 89-97.	1.4	493
62	Cellular and Pharmacological Selectivity of the Peroxisome Proliferator-Activated Receptor- $\hat{l}^2\hat{l}'$ Antagonist GSK3787. Molecular Pharmacology, 2010, 78, 419-430.	1.0	51
63	Mechanistic Insights into the Events That Lead to Synergistic Induction of Interleukin 6 Transcription upon Activation of the Aryl Hydrocarbon Receptor and Inflammatory Signaling. Journal of Biological Chemistry, 2010, 285, 24388-24397.	1.6	96
64	Estrogen Receptor Expression Is Required for Low-Dose Resveratrol-Mediated Repression of Aryl Hydrocarbon Receptor Activity. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 273-283.	1.3	29
65	The Uremic Toxin 3-Indoxyl Sulfate Is a Potent Endogenous Agonist for the Human Aryl Hydrocarbon Receptor. Biochemistry, 2010, 49, 393-400.	1.2	256
66	Development of a Selective Modulator of Aryl Hydrocarbon (Ah) Receptor Activity that Exhibits Anti-Inflammatory Properties. Chemical Research in Toxicology, 2010, 23, 955-966.	1.7	66
67	Differential Gene Regulation by the Human and Mouse Aryl Hydrocarbon Receptor. Toxicological Sciences, 2010, 114, 217-225.	1.4	90
68	Ligand Selectivity and Gene Regulation by the Human Aryl Hydrocarbon Receptor in Transgenic Mice. Molecular Pharmacology, 2009, 75, 1412-1420.	1.0	113
69	Ah receptor represses acute-phase response gene expression without binding to its cognate response element. Laboratory Investigation, 2009, 89, 695-707.	1.7	90
70	The Aryl-hydrocarbon receptor does not require the p23 co-chaperone for ligand binding and target gene expression in vivo. Toxicology Letters, 2009, 189, 57-62.	0.4	17
71	Transgenic Humanized AHR Mouse Reveals Differences between Human and Mouse AHR Ligand Selectivity. Molecular and Cellular Pharmacology, 2009, 1, 119-123.	1.7	62
72	Leukotriene A ₄ Metabolites Are Endogenous Ligands for the Ah Receptor. Biochemistry, 2008, 47, 8445-8455.	1.2	51

#	Article	IF	CITATIONS
73	The mouse and human Ah receptor differ in recognition of LXXLL motifs. Archives of Biochemistry and Biophysics, 2008, 471, 215-223.	1.4	41
74	Quantitative expression patterns of peroxisome proliferator-activated receptor- \hat{l}^2/\hat{l} (PPAR \hat{l}^2/\hat{l}) protein in mice. Biochemical and Biophysical Research Communications, 2008, 371, 456-461.	1.0	132
75	Characterization of the Antiallergic Drugs 3-[2-(2-Phenylethyl) benzoimidazole-4-yl]-3-hydroxypropanoic Acid and Ethyl 3-Hydroxy-3-[2-(2-phenylethyl)benzoimidazol-4-yl]propanoate as Full Aryl Hydrocarbon Receptor Agonists, Chemical Research in Toxicology, 2008, 21, 472-482.	1.7	15
76	Ah Receptor Binding to its Cognate Response Element is Required for Dioxin-Mediated Toxicity. Toxicological Sciences, 2008, 106, 301-303.	1.4	13
77	Inflammatory Signaling and Aryl Hydrocarbon Receptor Mediate Synergistic Induction of Interleukin 6 in MCF-7 Cells. Cancer Research, 2008, 68, 3609-3617.	0.4	97
78	Omeprazole Stimulates the Induction of Human Insulin-Like Growth Factor Binding Protein-1 through Aryl Hydrocarbon Receptor Activation. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 1102-1110.	1.3	34
79	Ligand Activation of Peroxisome Proliferator–Activated Receptor βĴſ (PPARβĴſ) Attenuates Carbon Tetrachloride Hepatotoxicity by Downregulating Proinflammatory Gene Expression. Toxicological Sciences, 2008, 105, 418-428.	1.4	76
80	$12(\langle i\rangle R\langle i\rangle)$ -Hydroxy- $5(\langle i\rangle Z\langle i\rangle)$,8 $(\langle i\rangle Z\langle i\rangle)$,10 $(\langle i\rangle E\langle i\rangle)$,14 $(\langle i\rangle Z\langle i\rangle)$ -eicosatetraenoic Acid [12(R)-HETE], an Arachidonic Acid Derivative, Is an Activator of the Aryl Hydrocarbon Receptor. Molecular Pharmacology, 2008, 74, 1649-1656.	1.0	53
81	The Aryl Hydrocarbon Receptor Complex and the Control of Gene Expression. Critical Reviews in Eukaryotic Gene Expression, 2008, 18, 207-250.	0.4	613
82	Evidence for an Aryl Hydrocarbon Receptor-Mediated Cytochrome P450 Autoregulatory Pathway. Molecular Pharmacology, 2007, 72, 1369-1379.	1.0	85
83	Aryl-hydrocarbon receptor activation regulates constitutive androstane receptor levels in murine and human liver. Hepatology, 2007, 46, 209-218.	3.6	69
84	Effects of the environmental mammary carcinogen 6-nitrochrysene on p53 and p21Cip1 protein expression and cell cycle regulation in MCF-7 and MCF-10A cells. Chemico-Biological Interactions, 2007, 170, 31-39.	1.7	8
85	The Aryl Hydrocarbon Receptor Directly Regulates Expression of the Potent Mitogen Epiregulin. Toxicological Sciences, 2006, 89, 75-82.	1.4	68
86	Role of GAC63 in Transcriptional Activation Mediated by the Aryl Hydrocarbon Receptor. Journal of Biological Chemistry, 2006, 281, 12242-12247.	1.6	31
87	Endogenous Hepatic Expression of the Hepatitis B Virus X-Associated Protein 2 Is Adequate for Maximal Association with Aryl Hydrocarbon Receptor-90-kDa Heat Shock Protein Complexes. Molecular Pharmacology, 2006, 70, 2096-2107.	1.0	27
88	ERα-AHR-ARNT Protein-Protein Interactions Mediate Estradiol-dependent Transrepression of Dioxin-inducible Gene Transcription. Journal of Biological Chemistry, 2005, 280, 21607-21611.	1.6	172
89	Peroxisome Proliferator-activated Receptor- \hat{l}^2/\hat{l}' Inhibits Epidermal Cell Proliferation by Down-regulation of Kinase Activity. Journal of Biological Chemistry, 2005, 280, 9519-9527.	1.6	81
90	Role of the aryl hydrocarbon receptor in drug metabolism. Expert Opinion on Drug Metabolism and Toxicology, 2005, 1, 9-21.	1.5	124

#	Article	IF	CITATIONS
91	Evidence that ligand binding is a key determinant of Ah receptor-mediated transcriptional activity. Archives of Biochemistry and Biophysics, 2005, 442, 59-71.	1.4	39
92	Use of 2-Azido-3-[125I]iodo-7,8-dibromodibenzo-p-dioxin as a Probe to Determine the Relative Ligand Affinity of Human versus Mouse Aryl Hydrocarbon Receptor in Cultured Cells. Molecular Pharmacology, 2004, 66, 129-136.	1.0	106
93	The Aryl Hydrocarbon (Ah) Receptor Transcriptional Regulator Hepatitis B Virus X-associated Protein 2 Antagonizes p23 Binding to Ah Receptor-Hsp90 Complexes and Is Dispensable for Receptor Function. Journal of Biological Chemistry, 2004, 279, 45652-45661.	1.6	47
94	Divergent Roles of Hepatitis B Virus X-Associated Protein 2 (XAP2) in Human versus Mouse Ah Receptor Complexesâ€. Biochemistry, 2004, 43, 700-709.	1.2	49
95	The hsp90 Co-chaperone XAP2 Alters Importin \hat{l}^2 Recognition of the Bipartite Nuclear Localization Signal of the Ah Receptor and Represses Transcriptional Activity. Journal of Biological Chemistry, 2003, 278, 2677-2685.	1.6	91
96	Evidence That Peroxisome Proliferator-activated Receptor \hat{l}_{\pm} Is Complexed with the 90-kDa Heat Shock Protein and the Hepatitis Virus B X-associated Protein 2. Journal of Biological Chemistry, 2003, 278, 4467-4473.	1.6	96
97	Characterization of the phosphorylation status of the hepatitis B virus X-associated protein 2. Archives of Biochemistry and Biophysics, 2002, 406, 209-221.	1.4	13
98	The subdomains of the transactivation domain of the aryl hydrocarbon receptor (AhR) inhibit AhR and estrogen receptor transcriptional activity. Archives of Biochemistry and Biophysics, 2002, 408, 93-102.	1.4	47
99	The role of chaperone proteins in the aryl hydrocarbon receptor core complex. Chemico-Biological Interactions, 2002, 141, 25-40.	1.7	238
100	A dynamic role for the Ah receptor in cell signaling?Insights from a diverse group of Ah receptor interacting proteins. Journal of Biochemical and Molecular Toxicology, 2002, 16, 317-325.	1.4	154
101	Use of [1251]4?-iodoflavone as a tool to characterize ligand-dependent differences in Ah receptor behavior. Journal of Biochemical and Molecular Toxicology, 2002, 16, 298-310.	1.4	6
102	Monitoring Nuclear Import with GFP-Variant Fusion Proteins in Digitonin-Permeabilized Cells. BioTechniques, 2001, 31, 772-775.	0.8	2
103	Aryl Hydrocarbon Receptor (AhR)/AhR Nuclear Translocator (ARNT) Activity Is Unaltered by Phosphorylation of a Periodicity/ARNT/Single-Minded (PAS)-Region Serine Residue. Molecular Pharmacology, 2001, 59, 557-566.	1.0	17
104	The Q-rich Subdomain of the Human AhReceptor Transactivation Domain Is Required for Dioxin-mediated Transcriptional Activity. Journal of Biological Chemistry, 2001, 276, 42302-42310.	1.6	68
105	A Tetratricopeptide Repeat Half-Site in the Aryl Hydrocarbon Receptor Is Important for DNA Binding and <i>trans </i> -Activation Potential. Molecular Pharmacology, 2000, 58, 1517-1524.	1.0	18
106	Subcellular Localization of the Aryl Hydrocarbon Receptor Is Modulated by the Immunophilin Homolog Hepatitis B Virus X-associated Protein 2. Journal of Biological Chemistry, 2000, 275, 37448-37453.	1.6	94
107	Aryl hydrocarbon (Ah) receptor levels are selectively modulated by hsp90-associated immunophilin homolog XAP2. Cell Stress and Chaperones, 2000, 5, 243.	1.2	88
108	Protein Kinase C Modulates Aryl Hydrocarbon Receptor Nuclear Translocator Protein-mediated Transactivation Potential in a Dimer Context. Journal of Biological Chemistry, 1999, 274, 12391-12400.	1.6	42

#	Article	IF	CITATIONS
109	Differential Recruitment of Coactivator RIP140 byAh and Estrogen Receptors. Journal of Biological Chemistry, 1999, 274, 22155-22164.	1.6	134
110	Characterization of the AhRâ^'hsp90â^'XAP2 Core Complex and the Role of the Immunophilin-Related Protein XAP2 in AhR Stabilization. Biochemistry, 1999, 38, 8907-8917.	1.2	211
111	Lack of an Absolute Requirement for the Native Aryl Hydrocarbon Receptor (AhR) and AhR Nuclear Translocator Transactivation Domains in Protein Kinase C-Mediated Modulation of the AhR Pathway. Archives of Biochemistry and Biophysics, 1999, 371, 246-259.	1.4	17
112	Protein Kinase C Activity Is Required for Aryl Hydrocarbon Receptor Pathway-Mediated Signal Transduction. Molecular Pharmacology, 1998, 53, 691-700.	1.0	158
113	Hepatitis B Virus X-Associated Protein 2 Is a Subunit of the Unliganded Aryl Hydrocarbon Receptor Core Complex and Exhibits Transcriptional Enhancer Activity. Molecular and Cellular Biology, 1998, 18, 978-988.	1.1	349
114	Hsp90-containing multiprotein complexes in the eukaryotic microbe Achlya. Cell Stress and Chaperones, 1998, 3, 44.	1.2	13
115	Characterization of a Subset of the Basic-Helix-Loop-Helix-PAS Superfamily That Interacts with Components of the Dioxin Signaling Pathway. Journal of Biological Chemistry, 1997, 272, 8581-8593.	1.6	425
116	The Ah Receptor Is a Sensitive Target of Geldanamycin-Induced Protein Turnover. Archives of Biochemistry and Biophysics, 1997, 348, 190-198.	1.4	76
117	Characterization of the Activated Form of the Aryl Hydrocarbon Receptor in the Nucleus of HeLa Cells in the Absence of Exogenous Ligand. Archives of Biochemistry and Biophysics, 1996, 329, 47-55.	1.4	87
118	A Model of Protein Targeting Mediated by Immunophilins and Other Proteins That Bind to hsp90 via Tetratricopeptide Repeat Domains. Journal of Biological Chemistry, 1996, 271, 13468-13475.	1.6	147
119	Mapping the 90 kDa heat shock protein binding region of the Ah receptor. IUBMB Life, 1996, 39, 589-593.	1.5	29
120	Evidence for two functionally distinct forms of the human Ah receptor. Journal of Biochemical Toxicology, 1995, 10, 95-102.	0.5	17
121	Production and Characterization of Monoclonal Antibodies Directed against the <i>Ah </i> Receptor. Hybridoma, 1995, 14, 279-283.	0.9	26
122	Localization and Characterization of the 86- and 84-kDa Heat Shock Proteins in Hepa 1c1c7 Cells. Experimental Cell Research, 1993, 209, 350-356.	1.2	71
123	Chemical cross-linking of the cytosolic and nuclear forms of the Ah receptor in hepatoma cell line 1c1c7. Biochemical and Biophysical Research Communications, 1992, 182, 55-62.	1.0	68
124	Detection of the Ah receptor in rainbow trout: Use of 2-azido-3-[1251]iodo-7,8-dibromodibenzo-P-dioxmin in cell culture. Toxicology Letters, 1991, 58, 85-95.	0.4	41
125	Comparison of the nuclear and cytosolic forms of the Ah receptor from Hepa 1c1c7 cells: Charge heterogeneity and ATP binding properties. Archives of Biochemistry and Biophysics, 1991, 291, 284-290.	1.4	41
126	Production ofahreceptor ligands in rat fecal suspensions containing tryptophan or indoleâ€3 arbinol. Nutrition and Cancer, 1991, 16, 209-218.	0.9	61

#	Article	IF	CITATIONS
127	Alterations in hepatic microsomal protein levels in rainbow trout fed cyclopropenoid fatty acids analyzed by two-dimensional gel electrophoresis. Biochemistry and Cell Biology, 1988, 66, 138-143.	0.9	4
128	The use of a zwitterionic detergent in two-dimensional gel electrophoresis of trout liver microsomes. Analytical Biochemistry, 1983, 135, 453-455.	1.1	126
129	Characterization of lipid-linked octa-, nona-, and decasaccharides formed during in vitro synthesis of mammary glycoproteins. Archives of Biochemistry and Biophysics, 1983, 220, 605-614.	1.4	7
130	Characterization of a new isomer of lipid-linked heptasaccharide formed during in vitro biosynthesis of mammary glycoproteins. FEBS Letters, 1982, 139, 321-324.	1.3	19
131	Biosynthesis of Mammary Glycoproteins. Structural Characterization of Lipid-Linked Glucosyloligosaccharides. FEBS Journal, 1982, 126, 167-172.	0.2	19