
Govind Chandra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6167666/publications.pdf Version: 2024-02-01

Ωονίνο Chanoda

#	Article	IF	CITATIONS
1	Hyphal compartmentalization and sporulation in Streptomyces require the conserved cell division protein SepX. Nature Communications, 2022, 13, 71.	12.8	9
2	How do Streptomyces coordinate DNA repair and cell division following DNA damage?. Access Microbiology, 2022, 4, .	0.5	0
3	Genome-Wide Identification of the LexA-Mediated DNA Damage Response in Streptomyces venezuelae. Journal of Bacteriology, 2022, 204, .	2.2	3
4	A User Guide for the Identification of New RiPP Biosynthetic Gene Clusters Using a RiPPER-Based Workflow. Methods in Molecular Biology, 2021, 2296, 227-247.	0.9	8
5	A conserved cell division protein directly regulates FtsZ dynamics in filamentous and unicellular actinobacteria. ELife, 2021, 10, .	6.0	12
6	Re-wiring the regulation of the formicamycin biosynthetic gene cluster to enable the development of promising antibacterial compounds. Cell Chemical Biology, 2021, 28, 515-523.e5.	5.2	16
7	Streptomyces venezuelae NRRL B-65442: genome sequence of a model strain used to study morphological differentiation in filamentous actinobacteria. Journal of Industrial Microbiology and Biotechnology, 2021, , .	3.0	14
8	Evolution of a σ–(c-di-GMP)–anti-σ switch. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
9	The microbiome of a shell mound: ancient anthropogenic waste as a source of Streptomyces degrading recalcitrant polysaccharides. World Journal of Microbiology and Biotechnology, 2021, 37, 210.	3.6	1
10	Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. ELife, 2021, 10, .	6.0	25
11	c-di-CMP Arms an Anti-σ to Control Progression of Multicellular Differentiation in Streptomyces. Molecular Cell, 2020, 77, 586-599.e6.	9.7	58
12	The novel ECF56 SigG1-RsfG system modulates morphological differentiation and metal-ion homeostasis in Streptomyces tsukubaensis. Scientific Reports, 2020, 10, 21728.	3.3	4
13	Regulation of Bottromycin Biosynthesis Involves an Internal Transcriptional Start Site and a Cluster-Situated Modulator. Frontiers in Microbiology, 2020, 11, 495.	3.5	7
14	Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nature Microbiology, 2020, 5, 821-829.	13.3	102
15	Control of mRNA translation by dynamic ribosome modification. PLoS Genetics, 2020, 16, e1008837.	3.5	13
16	Control of mRNA translation by dynamic ribosome modification. , 2020, 16, e1008837.		0
17	Control of mRNA translation by dynamic ribosome modification. , 2020, 16, e1008837.		0
18	Control of mRNA translation by dynamic ribosome modification. , 2020, 16, e1008837.		0

Control of mRNA translation by dynamic ribosome modification. , 2020, 16, e1008837. 18

GOVIND CHANDRA

#	Article	IF	CITATIONS
19	Immunity-Guided Identification of Threonyl-tRNA Synthetase as the Molecular Target of Obafluorin, a β-Lactone Antibiotic. ACS Chemical Biology, 2019, 14, 2663-2671.	3.4	13
20	Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Research, 2019, 47, 4624-4637.	14.5	98
21	Defining the regulon of genes controlled by Ïf ^E , a key regulator of the cell envelope stress response in <i>Streptomyces coelicolor</i> . Molecular Microbiology, 2019, 112, 461-481.	2.5	27
22	BldC Delays Entry into Development To Produce a Sustained Period of Vegetative Growth in Streptomyces venezuelae. MBio, 2019, 10, .	4.1	36
23	Discovery and Biosynthesis of the Antibiotic Bicyclomycin in Distantly Related Bacterial Classes. Applied and Environmental Microbiology, 2018, 84, .	3.1	36
24	The MerR-like protein BldC binds DNA direct repeats as cooperative multimers to regulate Streptomyces development. Nature Communications, 2018, 9, 1139.	12.8	26
25	Hierarchical interactions between Fnr orthologs allows fine-tuning of transcription in response to oxygen in Herbaspirillum seropedicae. Nucleic Acids Research, 2018, 46, 3953-3966.	14.5	5
26	The crystal structure of the RsbN–ÏfBldN complex from Streptomyces venezuelae defines a new structural class of anti-Ïf factor. Nucleic Acids Research, 2018, 46, 7405-7417.	14.5	10
27	Genome wide identification and experimental validation of Pseudomonas aeruginosa Tat substrates. Scientific Reports, 2018, 8, 11950.	3.3	11
28	Multiâ€layered inhibition of <i>Streptomyces</i> development: BldO is a dedicated repressor of <i>whiB</i> . Molecular Microbiology, 2017, 104, 700-711.	2.5	20
29	Translational Control of the SigR-Directed Oxidative Stress Response in Streptomyces via IF3-Mediated Repression of a Noncanonical GTC Start Codon. MBio, 2017, 8, .	4.1	25
30	Two dynamin-like proteins stabilize FtsZ rings during <i>Streptomyces</i> sporulation. Proceedings of the United States of America, 2017, 114, E6176-E6183.	7.1	70
31	The Conserved Actinobacterial Two-Component System MtrAB Coordinates Chloramphenicol Production with Sporulation in Streptomyces venezuelae NRRL B-65442. Frontiers in Microbiology, 2017, 8, 1145.	3.5	44
32	Analyzing the Complex Regulatory Landscape of Hfq – an Integrative, Multi-Omics Approach. Frontiers in Microbiology, 2017, 8, 1784.	3.5	17
33	The MtrAB two-component system controls antibiotic production in Streptomyces coelicolor A3(2). Microbiology (United Kingdom), 2017, 163, 1415-1419.	1.8	62
34	One ligand, two regulators and three binding sites: How KDPG controls primary carbon metabolism in Pseudomonas. PLoS Genetics, 2017, 13, e1006839.	3.5	39
35	A unifying mechanism for the biogenesis of membrane proteins co-operatively integrated by the Sec and Tat pathways. ELife, 2017, 6, .	6.0	11
36	Discovery of Unusual Biaryl Polyketides by Activation of a Silent <i>Streptomyces venezuelae</i> Biosynthetic Gene Cluster. ChemBioChem, 2016, 17, 2189-2198.	2.6	50

GOVIND CHANDRA

#	Article	IF	CITATIONS
37	Cosmid based mutagenesis causes genetic instability in Streptomyces coelicolor, as shown by targeting of the lipoprotein signal peptidase gene. Scientific Reports, 2016, 6, 29495.	3.3	4
38	Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis Shows that WhiB Is a Transcription Factor That Cocontrols Its Regulon with WhiA To Initiate Developmental Cell Division in <i>Streptomyces</i> . MBio, 2016, 7, e00523-16.	4.1	81
39	Metabolic Network for the Biosynthesis of Intra- and Extracellular α-Glucans Required for Virulence of Mycobacterium tuberculosis. PLoS Pathogens, 2016, 12, e1005768.	4.7	46
40	Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME Journal, 2015, 9, 2349-2359.	9.8	302
41	The Streptomyces leeuwenhoekii genome: de novo sequencing and assembly in single contigs of the chromosome, circular plasmid pSLE1 and linear plasmid pSLE2. BMC Genomics, 2015, 16, 485.	2.8	61
42	New Insights into Chloramphenicol Biosynthesis in Streptomyces venezuelae ATCC 10712. Antimicrobial Agents and Chemotherapy, 2014, 58, 7441-7450.	3.2	74
43	Response Regulator Heterodimer Formation Controls a Key Stage in Streptomyces Development. PLoS Genetics, 2014, 10, e1004554.	3.5	82
44	A holin and an endopeptidase are essential for chitinolytic protein secretion in <i>Serratia marcescens</i> . Journal of Cell Biology, 2014, 207, 615-626.	5.2	47
45	Developmental biology of <i>Streptomyces</i> from the perspective of 100 actinobacterial genome sequences. FEMS Microbiology Reviews, 2014, 38, 345-379.	8.6	120
46	Molecular Regulation of Antibiotic Biosynthesis in Streptomyces. Microbiology and Molecular Biology Reviews, 2013, 77, 112-143.	6.6	611
47	P _{II} signal transduction proteins: nitrogen regulation and beyond. FEMS Microbiology Reviews, 2013, 37, 251-283.	8.6	178
48	Genes Required for Aerial Growth, Cell Division, and Chromosome Segregation Are Targets of WhiA before Sporulation in Streptomyces venezuelae. MBio, 2013, 4, e00684-13.	4.1	121
49	Topoisomerase I (TopA) Is Recruited to ParB Complexes and Is Required for Proper Chromosome Organization during Streptomyces coelicolor Sporulation. Journal of Bacteriology, 2013, 195, 4445-4455.	2.2	39
50	Investigation of DNA sequence recognition by a streptomycete MarR family transcriptional regulator through surface plasmon resonance and X-ray crystallography. Nucleic Acids Research, 2013, 41, 7009-7022.	14.5	39
51	Draft Genome Sequence of the Human Pathogen Streptomyces somaliensis, a Significant Cause of Actinomycetoma. Journal of Bacteriology, 2012, 194, 3544-3545.	2.2	33
52	Expression of the chaplin and rodlin hydrophobic sheath proteins in <i>Streptomyces venezuelae</i> is controlled by σ ^{BldN} and a cognate antiâ€sigma factor, RsbN. Molecular Microbiology, 2012, 84, 1033-1049.	2.5	106
53	Dissecting the complete lipoprotein biogenesis pathway in <i>Streptomyces scabies</i> . Molecular Microbiology, 2011, 80, 1395-1412.	2.5	42
54	Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics, 2011, 12, 175.	2.8	127

GOVIND CHANDRA

#	Article	IF	CITATIONS
55	The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). Microbiology (United Kingdom), 2011, 157, 1312-1328.	1.8	82
56	Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology (United Kingdom), 2011, 157, 1565-1572.	1.8	136
57	The twin arginine protein transport pathway exports multiple virulence proteins in the plant pathogen <i>Streptomyces scabies</i> . Molecular Microbiology, 2010, 77, 252-271.	2.5	71
58	Investigating lipoprotein biogenesis and function in the model Gramâ€positive bacterium <i>Streptomyces coelicolor</i> . Molecular Microbiology, 2010, 77, 943-957.	2.5	56
59	Genes essential for morphological development and antibiotic production in <i>Streptomyces coelicolor</i> are targets of BldD during vegetative growth. Molecular Microbiology, 2010, 78, 361-379.	2.5	193
60	Genome Sequence of the Fleming Strain of <i>Micrococcus luteus</i> , a Simple Free-Living Actinobacterium. Journal of Bacteriology, 2010, 192, 841-860.	2.2	68
61	The use of the rare UUA codon to define "Expression Space―for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. Journal of Microbiology, 2008, 46, 1-11.	2.8	123
62	Evolutionary flux of potentially bldA-dependent Streptomyces genes containing the rare leucine codon TTA. Antonie Van Leeuwenhoek, 2008, 94, 111-126.	1.7	41
63	The Transcriptional Repressor Protein NsrR Senses Nitric Oxide Directly via a [2Fe-2S] Cluster. PLoS ONE, 2008, 3, e3623.	2.5	121
64	Genomics of <i>Actinobacteria</i> : Tracing the Evolutionary History of an Ancient Phylum. Microbiology and Molecular Biology Reviews, 2007, 71, 495-548.	6.6	852
65	A genetic and bioinformatic analysis ofStreptomyces coelicolorgenes containing TTA codons, possible targets for regulation by a developmentally significant tRNA. FEMS Microbiology Letters, 2007, 266, 20-28.	1.8	43
66	The evolution of development inStreptomycesanalysed by genome comparisons. FEMS Microbiology Reviews, 2006, 30, 651-672.	8.6	130
67	The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17927-17932.	7.1	134
68	Transposon Express, a software application to report the identity of insertions obtained by comprehensive transposon mutagenesis of sequenced genomes: analysis of the preference for in vitro Tn5 transposition into GC-rich DNA. Nucleic Acids Research, 2004, 32, e113-e113.	14.5	37
69	Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology (United Kingdom), 2004, 150, 2795-2806.	1.8	147
70	λ Red-Mediated Genetic Manipulation of Antibiotic-Producing Streptomyces. Advances in Applied Microbiology, 2004, 54, 107-128.	2.4	251