
Kanta Tsumoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6167522/publications.pdf Version: 2024-02-01

Κλητη Τεμμοτο

#	Article	IF	CITATIONS
1	Electrofusion of cells with different diameters by generating asymmetrical electric field in the microwell array. Analytical Sciences, 2022, 38, 235-239.	1.6	2
2	Mechanism of Budded Virus Envelope Fusion into a Planar Bilayer Lipid Membrane on a SiO ₂ Substrate. Langmuir, 2022, , .	3.5	3
3	Waterâ€inâ€Water Droplets Selectively Uptake Selfâ€Assembled DNA Nano/Microstructures: a Versatile Method for Purification in DNA Nanotechnology. ChemBioChem, 2022, 23, .	2.6	5
4	Polymerization/depolymerization of actin cooperates with the morphology and stability of cell-sized droplets generated in a polymer solution under a depletion effect. Journal of Chemical Physics, 2021, 155, 075101.	3.0	6
5	Conformation-specific monoclonal antibodies recognizing the native structure of G protein-coupled receptor (GPCR). International Immunopharmacology, 2021, 98, 107872.	3.8	2
6	Class-Switching of B Lymphocytes by DNA and Cell Immunization for Stereospecific Monoclonal Antibodies against Native GPCR. Immuno, 2021, 1, 432-441.	1.5	1
7	Membrane fusion and infection abilities of baculovirus virions are preserved during freezing and thawing in the presence of trehalose. Bioscience, Biotechnology and Biochemistry, 2020, 84, 686-694.	1.3	6
8	Selfâ€Emergent Protocells Generated in an Aqueous Solution with Binary Macromolecules through Liquidâ€Liquid Phase Separation. ChemBioChem, 2020, 21, 3323-3328.	2.6	24
9	Nonspecific characteristics of macromolecules create specific effects in living cells. Biophysical Reviews, 2020, 12, 425-434.	3.2	10
10	Optimization of stereospecific targeting technique for selective production of monoclonal antibodies against native ephrin type-A receptor 2. Journal of Immunological Methods, 2020, 484-485, 112813.	1.4	3
11	Future perspectives of therapeutic monoclonal antibodies. Immunotherapy, 2019, 11, 119-127.	2.0	85
12	B-cell receptor-based multitargeting method for simultaneous production of novel multiple monoclonal antibodies. Journal of Bioscience and Bioengineering, 2019, 128, 578-584.	2.2	2
13	Aqueous/Aqueous Micro Phase Separation: Construction of an Artificial Model of Cellular Assembly. Frontiers in Chemistry, 2019, 7, 44.	3.6	16
14	A reverse-phase method revisited: Rapid high-yield preparation of giant unilamellar vesicles (GUVs) using emulsification followed by centrifugation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 74-82.	4.7	16
15	Specific Spatial Localization of Actin and DNA in a Water/Water Microdroplet: Selfâ€Emergence of a Cellâ€Like Structure. ChemBioChem, 2018, 19, 1370-1374.	2.6	37
16	Huntingtin Polyglutamine-Dependent Protein Aggregation in Reconstituted Cells. ACS Synthetic Biology, 2018, 7, 377-383.	3.8	4
17	Opposite effect of polyamines on In vitro gene expression: Enhancement at low concentrations but inhibition at high concentrations. PLoS ONE, 2018, 13, e0193595.	2.5	26
18	Membrane fusion between baculovirus budded virus-enveloped particles and giant liposomes generated using a droplet-transfer method for the incorporation of recombinant membrane proteins. Colloids and Surfaces B: Biointerfaces, 2017, 155, 248-256.	5.0	9

Καντα Τςυμοτο

#	Article	IF	CITATIONS
19	The Aqueous Two Phase System (ATPS) Deserves Plausible Real-World Modeling for the Structure and Function of Living Cells. MRS Advances, 2017, 2, 2407-2413.	0.9	5
20	The method used to culture host cells (Sf9 cells) can affect the qualities of baculovirus budding particles expressing recombinant proteins. Bioscience, Biotechnology and Biochemistry, 2016, 80, 445-451.	1.3	5
21	Does DNA Exert an Active Role in Generating Cell-Sized Spheres in an Aqueous Solution with a Crowding Binary Polymer?. Life, 2015, 5, 459-466.	2.4	19
22	Incorporation of adenylate cyclase into membranes of giant liposomes using membrane fusion with recombinant baculovirus-budded virus particles. Biotechnology Letters, 2014, 36, 1253-1261.	2.2	5
23	Crowding by Anionic Nanoparticles Causes DNA Double-Strand Instability and Compaction. Journal of Physical Chemistry B, 2014, 118, 1256-1262.	2.6	30
24	pH Switching That Crosses over the Isoelectric Point (pI) Can Improve the Entrapment of Proteins within Giant Liposomes by Enhancing Protein–Membrane Interaction. Langmuir, 2014, 30, 554-563.	3.5	12
25	2P218 Self-Emergent Cell-Sized Sphere Entrapping DNA through Micro Phase-Segregation(13B.) Tj ETQq1 1 0.78	4314 rgBT 0.1	/Overlock 1
26	The binding of soluble recombinant human FcÎ ³ receptor I for human immunoglobulin G is conferred by its first and second extracellular domains. Molecular Immunology, 2013, 54, 403-407.	2.2	7
27	Monoclonal antibodies based on hybridoma technology. Pharmaceutical Patent Analyst, 2013, 2, 249-263.	1.1	20
28	Engineering of recombinant human Fc receptor I by directed evolution. Protein Engineering, Design and Selection, 2012, 25, 835-842.	2.1	7
29	Efficient expression of recombinant soluble human FcÎ ³ RI in mammalian cells and its characterization. Protein Expression and Purification, 2012, 82, 155-161.	1.3	4
30	Giant liposomes as microcapsules with large trapping volumes: Downsizing through various membrane filters and analysis with a calcein quenching method. , 2011, , .		0
31	Cadherin-integrated liposomes with potential application in a drug delivery system. Biomaterials, 2011, 32, 9899-9907.	11.4	33
32	Hybridoma technologies for antibody production. Immunotherapy, 2011, 3, 371-380.	2.0	84
33	Monitoring of membrane collapse and enzymatic reaction with single giant liposomes embedded in agarose gel. Colloid and Polymer Science, 2011, 289, 1337-1346.	2.1	8
34	Construction of an In Vitro Model of a Living Cellular System. , 2011, , 173-193.		2
35	2P243 Preparation and function of cadhein-integrated liposomes using baculovirus-liposome fusion method(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, S125.	0.1	0
36	Preparation of connexin43â€integrated giant Liposomes by a baculovirus expression–liposome fusion method. Biotechnology and Bioengineering, 2010, 107, 836-843.	3.3	22

Καντα Τςυμοτο

#	Article	IF	CITATIONS
37	Recent Advances in Antigen-Based Generation of Monoclonal Antibodies. Current Immunology Reviews, 2010, 6, 56-61.	1.2	9
38	Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1625-1631.	2.6	28
39	G protein coupled receptors (GPCRs) reconstituted on recombinant proteoliposomes using baculovirus-liposome membrane fusion. , 2009, , .		2
40	Diagnosis and discrimination of autoimmune Graves' disease and Hashimoto's disease using thyroid-stimulating hormone receptor-containing recombinant proteoliposomes. Journal of Bioscience and Bioengineering, 2009, 108, 551-556.	2.2	14
41	Efficient formation of giant liposomes through the gentle hydration of phosphatidylcholine films doped with sugar. Colloids and Surfaces B: Biointerfaces, 2009, 68, 98-105.	5.0	138
42	Recombinant Proteoliposomes Prepared Using Baculovirus Expression Systems. Methods in Enzymology, 2009, 465, 95-109.	1.0	11
43	1P-185 Preparation and function of connexin giant proteoliposomes(Biol & Artifi memb.:Structure) Tj ETQq1 49, S91.	1 0.78431 0.1	l 4 rgBT /Cve 0
44	Reconstitution and Microscopic Observation of G Protein Subunits on Giant Liposomes: Attempt to Construct a Cell Model with Functional Membrane Protein Components. , 2008, , .		2
45	Development of a Novel Preparation Method of Recombinant Proteoliposomes Using Baculovirus Gene Expression Systems. Journal of Biochemistry, 2008, 144, 763-770.	1.7	26
46	Unbinding of lipid bilayers induced by osmotic pressure in relation to unilamellar vesicle formation. Europhysics Letters, 2007, 80, 48002.	2.0	30
47	Display of Recombinant Membrane Receptors on Giant Liposomes: Attempt to Construct a Cell Model with Integrated Membrane Protein Systems. , 2007, , .		3
48	Genetic Nanomedicine and Tissue Engineering. Medical Clinics of North America, 2007, 91, 889-898.	2.5	20
49	Artificial Model Cell as a Micro-Robot. Journal of the Robotics Society of Japan, 2007, 25, 186-190.	0.1	1
50	Membrane Fusion between a Giant Vesicle and Small Enveloped Particles: Possibilities for the Application to Construct Model Cells. , 2006, , .		4
51	All-or-none switching of transcriptional activity on single DNA molecules caused by a discrete conformational transition. Applied Physics Letters, 2005, 86, 223901.	3.3	30
52	Enhancement and inhibition of DNA transcriptional activity by spermine: A marked difference between linear and circular templates. FEBS Letters, 2005, 579, 5119-5122.	2.8	32
53	Gene Expression within Cell-Sized Lipid Vesicles. ChemBioChem, 2003, 4, 1172-1175.	2.6	292
54	Giant DNA molecules exhibit on/off switching of transcriptional activity through conformational transition. Biophysical Chemistry, 2003, 106, 23-29.	2.8	66

Καντα Τςυμοτο

#	Article	IF	CITATIONS
55	NTP Concentration Switches Transcriptional Activity by Changing the Large-Scale Structure of DNA. Biomacromolecules, 2003, 4, 1121-1125.	5.4	13
56	Folding transition of large DNA completely inhibits the action of a restriction endonuclease as revealed by single-chain observation. FEBS Letters, 2002, 530, 143-146.	2.8	22
57	Switching of Higher-Order Structure of DNA and Gene Expression Seibutsu Butsuri, 2002, 42, 179-184.	0.1	5
58	Giant Liposome as a Biochemical Reactor:  Transcription of DNA and Transportation by Laser Tweezers. Langmuir, 2001, 17, 7225-7228.	3.5	118
59	Intra-molecular phase segregation in a single polyelectrolyte chain. Journal of Chemical Physics, 2001, 114, 6942-6949.	3.0	54
60	RNA switches the higher-order structure of DNA. Biophysical Chemistry, 1999, 82, 1-8.	2.8	16
61	DNA conformation and transcriptional properties: a higher-order of silence , 0, , .		0