Xiaojie Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6167125/publications.pdf

Version: 2024-02-01

16	9,657 citations	16	940416
papers	citations	h-index	g-index
19	19	19	13692
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reversed graph embedding resolves complex single-cell trajectories. Nature Methods, 2017, 14, 979-982.	9.0	2,691
2	The single-cell transcriptional landscape of mammalian organogenesis. Nature, 2019, 566, 496-502.	13.7	2,292
3	Single-cell mRNA quantification and differential analysis with Census. Nature Methods, 2017, 14, 309-315.	9.0	1,179
4	Comprehensive single-cell transcriptional profiling of a multicellular organism. Science, 2017, 357, 661-667.	6.0	1,067
5	Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. Molecular Cell, 2018, 71, 858-871.e8.	4.5	572
6	Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell, 2022, 185, 1777-1792.e21.	13.5	437
7	The cis-regulatory dynamics of embryonic development at single-cell resolution. Nature, 2018, 555, 538-542.	13.7	323
8	Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science, 2015, 350, 1251-1255.	6.0	201
9	Mapping transcriptomic vector fields of single cells. Cell, 2022, 185, 690-711.e45.	13.5	167
10	A pooled single-cell genetic screen identifies regulatory checkpoints in the continuum of the epithelial-to-mesenchymal transition. Nature Genetics, 2019, 51, 1389-1398.	9.4	150
11	Inferring Causal Gene Regulatory Networks from Coupled Single-Cell Expression Dynamics Using Scribe. Cell Systems, 2020, 10, 265-274.e11.	2.9	110
12	Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell, 2022, 185, 1905-1923.e25.	13.5	108
13	Thyroid hormone regulates distinct paths to maturation in pigment cell lineages. ELife, 2019, 8, .	2.8	106
14	Massively parallel and time-resolved RNA sequencing in single cells with scNT-seq. Nature Methods, 2020, 17, 991-1001.	9.0	103
15	Aligning Single-Cell Developmental and Reprogramming Trajectories Identifies Molecular Determinants of Myogenic Reprogramming Outcome. Cell Systems, 2018, 7, 258-268.e3.	2.9	65
16	From Understanding the Development Landscape of the Canonical Fate-Switch Pair to Constructing a Dynamic Landscape for Two-Step Neural Differentiation. PLoS ONE, 2012, 7, e49271.	1.1	32