Bassam Alameddine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6167084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copolymer networks with contorted units and highly polar groups for ultra-fast selective cationic dye adsorption and iodine uptake. Polymer, 2022, 239, 124467.	1.8	18
2	Creating Optimal Pockets in a Clathrochelate-Based Metal–Organic Framework for Gas Adsorption and Separation: Experimental and Computational Studies. Journal of the American Chemical Society, 2022, 144, 3737-3745.	6.6	85
3	Conjugated microporous polymers using a copper-catalyzed [4 + 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption. Polymer Chemistry, 2021, 12, 2282-2292.	1.9	29
4	Selective removal of toxic organic dyes using TrÓ§ger base-containing sulfone copolymers made from a metal-free thiol-yne click reaction followed by oxidation. RSC Advances, 2021, 11, 21170-21178.	1.7	11
5	Sizable iodine uptake of porous copolymer networks bearing Tröger's base units. Polymer, 2021, 229, 123996.	1.8	18
6	Fluorinated Iron(<scp>ii</scp>) clathrochelate units in metalorganic based copolymers: improved porosity, iodine uptake, and dye adsorption properties. RSC Advances, 2021, 11, 14986-14995.	1.7	23
7	Highly Selective and Sensitive Aggregationâ€Induced Emission of Fluoresceinâ€Coated Metal Oxide Nanoparticles. ChemistryOpen, 2021, 10, 1067-1073.	0.9	2
8	Regulation of Catenation in Metal–Organic Frameworks with Tunable Clathrochelate-Based Building Blocks. Crystal Growth and Design, 2021, 21, 6665-6670.	1.4	7
9	Synthesis of conjugated polymers <i>via</i> cyclopentannulation reaction: promising materials for iodine adsorption. Polymer Chemistry, 2020, 11, 3066-3074.	1.9	33
10	Polyphenylene networks containing triptycene units: Promising porous materials for CO2, CH4, and H2 adsorption. Microporous and Mesoporous Materials, 2020, 303, 110256.	2.2	13
11	Conjugated copolymers bearing 2,7-dithienylphenanthrene-9,10-dialkoxy units: highly soluble and stable deep-blue emissive materials. New Journal of Chemistry, 2020, 44, 9557-9564.	1.4	2
12	Star-shaped tetra- and octa-arylamine triptycene-based dendrimers: modular building blocks for blue emission materials. Materials Today Chemistry, 2019, 14, 100190.	1.7	5
13	Conjugated copolymers bearing 2,7-di(thiophen-2-yl)phenanthrene-9,10-dione units and alteration of their emission via functionalization of the ortho-dicarbonyl groups into quinoxaline and phenazine derivatives. Polymer, 2019, 178, 121589.	1.8	5
14	Synthesis of secondary arylamine copolymers with Iron(II) clathrochelate units and their functionalization into tertiary Polyarylamines via Buchwald-Hartwig cross-coupling reaction. Polymer, 2019, 178, 121606.	1.8	11
15	Synthesis of triptycene-derived covalent organic polymer networks and their subsequent in-situ functionalization with 1,2-dicarbonyl substituents. Reactive and Functional Polymers, 2019, 139, 153-161.	2.0	14
16	Tuning the optical properties of ethynylene triptyceneâ€based copolymers via oxidation of their alkyne groups into αâ€diketones. Journal of Polymer Science Part A, 2018, 56, 931-937.	2.5	13
17	Microwaveâ€Assisted [4+2] Diels–Alder Cycloaddition of 1,4â€Diethynyl Triptycene with Various Cyclopentadienone Derivatives: Promising Building Blocks for Polymer Networks. Asian Journal of Organic Chemistry, 2018, 7, 378-382.	1.3	12
18	Triptycene-containing Poly(vinylene sulfone) derivatives from a metal-free thiol-yne click polymerization followed by a mild oxidation reaction. Polymer, 2018, 154, 233-240.	1.8	17

#	Article	IF	CITATIONS
19	Synthesis, characterization, thermal,Âand optical properties of conjugated copolymers derived from phenanthrene-9,10-dione- and dibenzo[f,h]quinoxaline. Materials Today Chemistry, 2018, 10, 213-220.	1.7	4
20	Influence of size and nature of the aryl diborate spacer on the intrinsic microporosity of Iron(II) clathrochelate polymers. Polymer, 2018, 151, 164-170.	1.8	16
21	Laterally stretched polycyclic aromatic hydrocarbons: synthesis of dibenzophenanthroheptaphene and tetrabenzotriphenylenopyranthrene derivatives. New Journal of Chemistry, 2017, 41, 6025-6032.	1.4	6
22	Direct synthesis of polyaromatic chains of tribenzopentaphene copolymers through cyclodehydrogenation of their polyâ€ŧetraphenylbenzene precursors. Journal of Polymer Science Part A, 2017, 55, 3565-3572.	2.5	3
23	Synthesis and characterization of metalorganic polymers of intrinsic microporosity based on iron(II) clathrochelate. Polymer, 2017, 122, 200-207.	1.8	22
24	Highly soluble metal-organic polymers based on iron(II) clathrochelates and their gelation induced by sonication. European Polymer Journal, 2017, 95, 566-574.	2.6	18
25	Large heterometallic coordination cages with gyrobifastigium-like geometry. Chemical Communications, 2016, 52, 11243-11246.	2.2	32
26	Tribenzopentaphene derivatives with lateral aromatic groups: the effect of the nature and position of substituents on emission properties. New Journal of Chemistry, 2016, 40, 10363-10370.	1.4	9
27	Synthesis of Arylamine Tribenzopentaphenes and Investigation of their Hole Mobility. ChemistryOpen, 2015, 4, 453-456.	0.9	6
28	Influence of linear and branched perfluoroalkylated side chains on the π–π stacking behaviour of hexa-peri-hexabenzocoronene and thermotropic properties. Supramolecular Chemistry, 2014, 26, 125-137.	1.5	25
29	Theoretical Study of the Stacking Behavior of Selected Polycondensed Aromatic Hydrocarbons with Various Symmetries. Journal of Physical Chemistry A, 2013, 117, 616-625.	1.1	12
30	Synthesis of Alkyl-Substituted Tribenzopentaphenes as Versatile Polycondensed Aromatic Hydrocarbon Ï€-I€ Stacking Building Blocks. Synthesis, 2012, 44, 1928-1934.	1.2	8
31	Hexa-peri-hexabenzocoronenes $\hat{a} \in$ Controlling their Self-Assembly by Engineering the Lateral Substituents. Chimia, 2008, 62, 967.	0.3	5
32	Synthesis of Perfluoroalkylated Bulky Triarylamines. Synthesis, 2007, 2007, 271-276.	1.2	0
33	Controlling the lateral aggregation of perfluoroalkylated hexa-peri-hexabenzocoronenes. Journal of Materials Chemistry, 2007, 17, 1262-1267.	6.7	11
34	Self-aggregated perfluoroalkylated hexa-peri-hexabenzocoronene fibers observed by cryo-SEM and fluorescence spectroscopy. Chemical Communications, 2006, , 4221-4223.	2.2	9
35	Jet-printed electrodes and semiconducting oligomers for elaboration of organic thin-film transistors. Organic Electronics, 2006, 7, 423-427.	1.4	25
36	Synthesis of Novel Fluorinated Hexa-peri-hexabenzocoronenes. Synthesis, 2006, 2006, 2891-2896.	1.2	2

#	Article	IF	CITATIONS
37	Mesomorphic Hexabenzocoronenes Bearing Perfluorinated Chains. Chemistry of Materials, 2005, 17, 4798-4807.	3.2	50
38	Ï€-Stacking Behavior of Selected Nitrogen-Containing PAHs. Journal of Physical Chemistry A, 2004, 108, 9155-9160.	1.1	17