
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6166999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electroosmotic flow of non-Newtonian fluid in microchannels. Journal of Non-Newtonian Fluid Mechanics, 2009, 157, 133-137.	1.0	193
2	Lattice Boltzmann modeling of microchannel flows in the transition flow regime. Microfluidics and Nanofluidics, 2011, 10, 607-618.	1.0	158
3	Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions. Physics of Fluids, 2005, 17, 058101.	1.6	156
4	Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook. Energy, 2015, 90, 701-721.	4.5	155
5	Gas slippage effect on microscale porous flow using the lattice Boltzmann method. Physical Review E, 2005, 72, 056301.	0.8	142
6	Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves. Applied Thermal Engineering, 2013, 55, 121-132.	3.0	129
7	Experimental and numerical studies of liquid flow and heat transfer in microtubes. International Journal of Heat and Mass Transfer, 2007, 50, 3447-3460.	2.5	121
8	Experimental study of compressibility, roughness and rarefaction influences on microchannel flow. International Journal of Heat and Mass Transfer, 2007, 50, 2282-2295.	2.5	121
9	Improved axisymmetric lattice Boltzmann scheme. Physical Review E, 2010, 81, 056707.	0.8	101
10	Optical property of nanofluids with particle agglomeration. Solar Energy, 2015, 122, 864-872.	2.9	97
11	Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting. Solar Energy, 2016, 137, 393-400.	2.9	97
12	Thermal boundary condition for the thermal lattice Boltzmann equation. Physical Review E, 2005, 72, 016703.	0.8	96
13	Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation. International Journal of Heat and Mass Transfer, 2014, 79, 126-136.	2.5	87
14	Film condensation heat transfer on a horizontal tube in presence of a noncondensable gas. Applied Thermal Engineering, 2012, 36, 414-425.	3.0	78
15	LATTICE BOLTZMANN METHOD FOR SIMULATING GAS FLOW IN MICROCHANNELS. International Journal of Modern Physics C, 2004, 15, 335-347.	0.8	73
16	Effective thermal conductivity of the solid backbone of aerogel. International Journal of Heat and Mass Transfer, 2013, 64, 452-456.	2.5	73
17	Experimental investigation of condensation heat transfer on hybrid wettability finned tube with large amount of noncondensable gas. International Journal of Heat and Mass Transfer, 2015, 85, 513-523.	2.5	71
18	Investigation of coalescence-induced droplet jumping on superhydrophobic surfaces and liquid condensate adhesion on slit and plain fins. International Journal of Heat and Mass Transfer, 2015, 88, 445-455.	2.5	71

#	Article	IF	CITATIONS
19	Parametric study and field synergy principle analysis of H-type finned tube bank with 10 rows. International Journal of Heat and Mass Transfer, 2013, 60, 241-251.	2.5	68
20	Numerical study of natural convection in porous media (metals) using Lattice Boltzmann Method (LBM). International Journal of Heat and Fluid Flow, 2010, 31, 925-934.	1.1	66
21	Numerical study of radiative properties of nanoporous silica aerogel. International Journal of Thermal Sciences, 2015, 89, 110-120.	2.6	62
22	IMPLICIT-EXPLICIT FINITE-DIFFERENCE LATTICE BOLTZMANN METHOD FOR COMPRESSIBLE FLOWS. International Journal of Modern Physics C, 2007, 18, 1961-1983.	0.8	61
23	Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs. International Journal of Heat and Mass Transfer, 2015, 82, 429-434.	2.5	61
24	Numerical investigation of heat transfer and erosion characteristics for H-type finned oval tube with longitudinal vortex generators and dimples. Applied Energy, 2014, 127, 93-104.	5.1	58
25	Heat conduction modeling in 3-D ordered structures for prediction of aerogel thermal conductivity. International Journal of Heat and Mass Transfer, 2014, 73, 103-109.	2.5	57
26	Lattice Boltzmann modelling Knudsen layer effect in non-equilibrium flows. Europhysics Letters, 2008, 83, 40008.	0.7	56
27	Numerical investigation on heat transfer of supercritical carbon dioxide in a vertical tube under circumferentially non-uniform heating. Applied Thermal Engineering, 2018, 138, 354-364.	3.0	56
28	Exergy analysis of a hybrid PV/T system based on plasmonic nanofluids and silica aerogel glazing. Solar Energy, 2019, 183, 501-511.	2.9	52
29	Prediction of the gaseous thermal conductivity in aerogels with non-uniform pore-size distribution. Journal of Non-Crystalline Solids, 2012, 358, 3124-3128.	1.5	51
30	Lattice Boltzmann model for axisymmetric thermal flows. Physical Review E, 2009, 80, 037702.	0.8	49
31	Static and dynamic behavior of water droplet on solid surfaces with pillar-type nanostructures from molecular dynamics simulation. International Journal of Heat and Mass Transfer, 2014, 79, 647-654.	2.5	49
32	The effect of surface wettability on water vapor condensation in nanoscale. Scientific Reports, 2016, 6, 19192.	1.6	48
33	Monte Carlo study on extinction coefficient of silicon carbide porous media used for solar receiver. International Journal of Heat and Mass Transfer, 2016, 92, 1061-1065.	2.5	46
34	Lattice Boltzmann simulation of droplet formation in T-junction and flow focusing devices. Computers and Fluids, 2014, 90, 155-163.	1.3	45
35	AN IMPROVED THERMAL LATTICE BOLTZMANN MODEL FOR FLOWS WITHOUT VISCOUS HEAT DISSIPATION AND COMPRESSION WORK. International Journal of Modern Physics C, 2008, 19, 125-150.	0.8	44
36	Dropwise condensation heat transfer model considering the liquid-solid interfacial thermal resistance. International Journal of Heat and Mass Transfer, 2017, 112, 333-342.	2.5	44

#	Article	IF	CITATIONS
37	Simulation of three-component fluid flows using the multiphase lattice Boltzmann flux solver. Journal of Computational Physics, 2016, 314, 228-243.	1.9	43
38	Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes. Energy, 2019, 170, 480-496.	4.5	43
39	SIMULATION OF FLUID FLOW AND HEAT TRANSFER IN A PLANE CHANNEL USING THE LATTICE BOLTZMANN METHOD. International Journal of Modern Physics B, 2003, 17, 183-187.	1.0	42
40	Electroosmotic flow and mixing in microchannels with the lattice Boltzmann method. Journal of Applied Physics, 2006, 100, 094908.	1.1	42
41	A theoretical model for gas-contributed thermal conductivity in nanoporous aerogels. International Journal of Heat and Mass Transfer, 2019, 137, 64-73.	2.5	42
42	Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery. Scientific Reports, 2016, 6, 27274.	1.6	41
43	Theoretical investigation of stable dropwise condensation heat transfer on a horizontal tube. Applied Thermal Engineering, 2014, 62, 671-679.	3.0	40
44	Droplet Morphology and Mobility on Lubricant-Impregnated Surfaces: A Molecular Dynamics Study. Langmuir, 2019, 35, 16377-16387.	1.6	39
45	Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers. Energy, 2014, 74, 27-36.	4.5	38
46	Prediction of sulfuric acid dew point temperature on heat transfer fin surface. Applied Thermal Engineering, 2016, 98, 492-501.	3.0	38
47	A performance recovery coefficient for thermal-hydraulic evaluation of recuperator in supercritical carbon dioxide Brayton cycle. Energy Conversion and Management, 2022, 256, 115393.	4.4	38
48	Multi-layer graded doping in silica aerogel insulation with temperature gradient. International Journal of Heat and Mass Transfer, 2016, 99, 192-200.	2.5	36
49	Molecular dynamics simulation of droplet nucleation and growth on a rough surface: revealing the microscopic mechanism of the flooding mode. RSC Advances, 2018, 8, 24517-24524.	1.7	36
50	Three-dimensional non-free-parameter lattice-Boltzmann model and its application to inviscid compressible flows. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2101-2108.	0.9	35
51	Experimental investigation of non-Newtonian liquid flow in microchannels. Journal of Non-Newtonian Fluid Mechanics, 2012, 173-174, 21-29.	1.0	33
52	Experimental study on directional motion of a single droplet on cactus spines. International Journal of Heat and Mass Transfer, 2015, 84, 198-202.	2.5	33
53	Dropwise condensation on bioinspired hydrophilic-slippery surface. RSC Advances, 2018, 8, 39341-39351.	1.7	33
54	Dynamic Wettability on the Lubricant-Impregnated Surface: From Nucleation to Growth and Coalescence. ACS Applied Materials & Interfaces, 2020, 12, 26555-26565.	4.0	33

#	Article	IF	CITATIONS
55	Electroviscous effect on non-Newtonian fluid flow in microchannels. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 435-440.	1.0	32
56	Experimental research of CFB ash deposition on helical finned tubes. Applied Thermal Engineering, 2012, 37, 420-429.	3.0	32
57	Thermal conduction in nano-porous silicon thin film. Journal of Applied Physics, 2013, 114, .	1.1	31
58	Three-dimensional lattice Boltzmann model for gaseous flow in rectangular microducts and microscale porous media. Journal of Applied Physics, 2005, 97, 104918.	1.1	30
59	Pressure-driven and electroosmotic non-Newtonian flows through microporous media via lattice Boltzmann method. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 1536-1542.	1.0	30
60	Dynamics of droplet and liquid layer penetration in three-dimensional porous media: A lattice Boltzmann study. Physics of Fluids, 2019, 31, .	1.6	30
61	High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array. Optics Express, 2015, 23, 30681.	1.7	29
62	Experimental investigation of convective condensation heat transfer on tube bundles with different surface wettability at large amount of noncondensable gas. Applied Thermal Engineering, 2016, 100, 699-707.	3.0	29
63	Electron–phonon scattering effect on the lattice thermal conductivity of silicon nanostructures. Physical Chemistry Chemical Physics, 2017, 19, 28517-28526.	1.3	29
64	Hybrid Wettability-Induced Heat Transfer Enhancement for Condensation with NonCondensable Gas. Langmuir, 2019, 35, 9430-9440.	1.6	29
65	Lattice Boltzmann method and its applications in engineering thermophysics. Science Bulletin, 2009, 54, 4117-4134.	1.7	28
66	Bingham fluid simulation with the incompressible lattice Boltzmann model. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 145-151.	1.0	28
67	Rarefaction throttling effect: Influence of the bend in micro-channel gaseous flow. Physics of Fluids, 2018, 30, .	1.6	28
68	Kramers' problem and the Knudsen minimum: a theoretical analysis using a linearized 26-moment approach. Continuum Mechanics and Thermodynamics, 2009, 21, 345-360.	1.4	26
69	Photothermal conversion enhancement of triangular nanosheets for solar energy harvest. Applied Thermal Engineering, 2020, 173, 115182.	3.0	26
70	Biaxial Strain Improving the Thermoelectric Performance of a Two-Dimensional MoS ₂ /WS ₂ Heterostructure. ACS Applied Electronic Materials, 2021, 3, 2995-3004.	2.0	26
71	Experimental observations and lattice Boltzmann method study of the electroviscous effect for liquid flow in microchannels. Journal of Micromechanics and Microengineering, 2007, 17, 539-550.	1.5	25
72	Lattice Boltzmann simulation of nonequilibrium effects in oscillatory gas flow. Physical Review E, 2008, 78, 026706.	0.8	25

#	Article	IF	CITATIONS
73	Phonon boundary scattering effect on thermal conductivity of thin films. Journal of Applied Physics, 2011, 110, 046102.	1.1	25
74	Hydrogenation: An effective strategy to improve the thermoelectric properties of multilayer silicene. Physical Review B, 2019, 99, .	1.1	25
75	All-day effective radiative cooling by optically selective and thermally insulating mesoporous materials. Solar Energy, 2022, 235, 170-179.	2.9	25
76	A Resistance Model for Newtonian and Power-Law Non-Newtonian Fluid Transport in Porous Media. Transport in Porous Media, 2014, 104, 435-449.	1.2	23
77	Arrangement and three-dimensional analysis of cooling wall in 1000ÂMWÂS–CO2 coal-fired boiler. Energy, 2020, 197, 117168.	4.5	23
78	Anti-icing propagation and icephobicity of slippery liquid-infused porous surface for condensation frosting. International Journal of Heat and Mass Transfer, 2022, 190, 122730.	2.5	23
79	Numerical simulations of gas resonant oscillations in a closed tube using lattice Boltzmann method. International Journal of Heat and Mass Transfer, 2008, 51, 3082-3090.	2.5	22
80	Thermal-Hydraulic-Structural Analysis and Design Optimization for Micron-Sized Printed Circuit Heat Exchanger. Journal of Thermal Science, 2019, 28, 252-261.	0.9	22
81	Numerical analysis of mixing enhancement for micro-electroosmotic flow. Journal of Applied Physics, 2010, 107, .	1.1	21
82	Numerical Analysis of Slotted Airfoil Fins for Printed Circuit Heat Exchanger in S-CO2 Brayton Cycle. Journal of Nuclear Engineering and Radiation Science, 2019, 5, .	0.2	21
83	An improved phase-field-based lattice Boltzmann model for droplet dynamics with soluble surfactant. Computers and Fluids, 2019, 179, 508-520.	1.3	21
84	LATTICE BOLTZMANN MODEL FOR SIMULATING VISCOUS COMPRESSIBLE FLOWS. International Journal of Modern Physics C, 2010, 21, 383-407.	0.8	20
85	Non-Newtonian rheology property for two-phase flow on fingering phenomenon in porous media using the lattice Boltzmann method. Journal of Non-Newtonian Fluid Mechanics, 2016, 229, 86-95.	1.0	20
86	Numerical investigation on the coupling of ash deposition and acid vapor condensation on the H-type fin tube bank. Applied Thermal Engineering, 2018, 139, 524-534.	3.0	20
87	Multi-Objective Optimization for China's Power Carbon Emission Reduction by 2035. Journal of Thermal Science, 2019, 28, 184-194.	0.9	20
88	Simulation of Newtonian and non-Newtonian rheology behavior of viscous fingering in channels by the lattice Boltzmann method. Computers and Mathematics With Applications, 2014, 68, 1279-1291.	1.4	19
89	Relative permeability of two-phase flow in three-dimensional porous media using the lattice Boltzmann method. International Journal of Heat and Fluid Flow, 2018, 73, 101-113.	1.1	19
90	Thermal-hydraulic and fouling performances of enhanced double H-type finned tubes for residual heat recovery. Applied Thermal Engineering, 2021, 189, 116724.	3.0	19

#	Article	IF	CITATIONS
91	Toward optical selectivity aerogels by plasmonic nanoparticles doping. Renewable Energy, 2022, 190, 741-751.	4.3	19
92	Study of wetting and spontaneous motion of droplets on microstructured surfaces with the lattice Boltzmann method. Journal of Applied Physics, 2015, 117, .	1.1	18
93	Finite element analysis of anti-erosion characteristics of material with patterned surface impacted by particles. Powder Technology, 2019, 342, 193-203.	2.1	18
94	Microannular electro-osmotic flow with the axisymmetric lattice Boltzmann method. Journal of Applied Physics, 2010, 108, 114903.	1.1	17
95	Microscopic mechanism of ice nucleation: The effects of surface rough structure and wettability. Applied Surface Science, 2020, 510, 145520.	3.1	17
96	Phonon confinement and transport in ultrathin films. Physical Review B, 2020, 101, .	1.1	17
97	Thermal conductivity in nanostructured materials and analysis of local angle between heat fluxes. Journal of Applied Physics, 2014, 116, .	1.1	16
98	Integration of S-CO2 Brayton cycle and coal-fired boiler: Thermal-hydraulic analysis and design. Energy Conversion and Management, 2020, 225, 113452.	4.4	16
99	Non-silica fiber and enabled stratified fiber doping for high temperature aerogel insulation. International Journal of Heat and Mass Transfer, 2020, 160, 120194.	2.5	16
100	Lattice Boltzmann Simulation of Droplet Formation in Non-Newtonian Fluids. Communications in Computational Physics, 2015, 17, 1056-1072.	0.7	15
101	Experimental study of microchannel flow for non-Newtonian fluid in the presence of salt. Experimental Thermal and Fluid Science, 2016, 74, 91-99.	1.5	15
102	Acid condensation and heat transfer characteristics on H-type fin surface with bleeding dimples and longitudinal vortex generators. Science Bulletin, 2014, 59, 4405-4417.	1.7	14
103	Droplet Nucleation and Growth in the Presence of Noncondensable Gas: A Molecular Dynamics Study. Langmuir, 2021, 37, 9009-9016.	1.6	14
104	Lattice Boltzmann simulation of flow in porous media on non-uniform grids. Progress in Computational Fluid Dynamics, 2005, 5, 97.	0.1	13
105	COMPARISON OF GAS SLIP MODELS WITH SOLUTIONS OF LINEARIZED BOLTZMANN EQUATION AND DIRECT SIMULATION OF MONTE CARLO METHOD. International Journal of Modern Physics C, 2007, 18, 203-216.	0.8	13
106	Non-Newtonian flow in microporous structures under the electroviscous effect. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 875-881.	1.0	13
107	Failure and Recovery of Droplet Nucleation and Growth on Damaged Nanostructures: A Molecular Dynamics Study. Langmuir, 2020, 36, 13716-13724.	1.6	13
108	Water molecular bridge undermines thermal insulation of Nano-porous silica aerogels. Journal of Molecular Liquids, 2022, 349, 118176.	2.3	13

#	Article	IF	CITATIONS
109	SIMULATION OF TWO-DIMENSIONAL OSCILLATING FLOW USING THE LATTICE BOLTZMANN METHOD. International Journal of Modern Physics C, 2006, 17, 615-630.	0.8	12
110	MASS MODIFIED OUTLET BOUNDARY FOR A FULLY DEVELOPED FLOW IN THE LATTICE BOLTZMANN EQUATION. International Journal of Modern Physics C, 2007, 18, 1209-1221.	0.8	12
111	Monte Carlo Study on Carbon-Gradient-Doped Silica Aerogel Insulation. Journal of Nanoscience and Nanotechnology, 2015, 15, 3259-3264.	0.9	12
112	Experimental Study of Heat Transfer and Pressure Drop for H-type Finned Oval Tube with Longitudinal Vortex Generators and Dimples under Flue Gas. Heat Transfer Engineering, 2018, 39, 608-616.	1.2	12
113	Steady and transient operation of an organic Rankine cycle power system. Renewable Energy, 2019, 133, 284-294.	4.3	12
114	Apparent permeability study of rarefied gas transport properties through ultra-tight VORONOI porous media by Discrete Velocity Method. Journal of Natural Gas Science and Engineering, 2020, 74, 103100.	2.1	12
115	Inhibited radiation transmittance and enhanced thermal stability of silica aerogels under very-high temperature. Ceramics International, 2021, 47, 19824-19834.	2.3	12
116	Investigation of coalesced droplet vertical jumping and horizontal moving on textured surface using the lattice Boltzmann method. Computers and Mathematics With Applications, 2018, 75, 1213-1225.	1.4	12
117	Lattice Boltzmann model for thermal transpiration. Physical Review E, 2009, 79, 027701.	0.8	11
118	Thermal-hydraulic-structural evaluation of S–CO2 cooling wall tubes: A thermal stress evaluating criterion and optimization. International Journal of Thermal Sciences, 2021, 170, 107161.	2.6	11
119	Numerical investigation of erosion characteristics of multiple-particle impact on ductile material with patterned surfaces. Powder Technology, 2020, 362, 527-538.	2.1	10
120	Experimental investigation on the springback of AZ31B Mg alloys in warm incremental sheet forming assisted with oil bath heating. International Journal of Advanced Manufacturing Technology, 2020, 109, 535-551.	1.5	10
121	Study of coalescence-induced droplet jumping during phase-change process in the presence of noncondensable gas. International Journal of Heat and Mass Transfer, 2020, 152, 119506.	2.5	10
122	Numerical Study of the Solid Particle Erosion on H-Type Finned Circular/Elliptic Tube Surface. Communications in Computational Physics, 2017, 21, 466-489.	0.7	9
123	Inhibition of surface ice nucleation by combination of superhydrophobic coating and alcohol spraying. International Journal of Heat and Mass Transfer, 2019, 134, 628-633.	2.5	9
124	Two-Dimensional SnSe Composited with One-Dimensional Mn Nanowires: A Promising Thermoelectric with Ultrahigh Power Factor. ACS Applied Energy Materials, 2020, 3, 9234-9245.	2.5	9
125	Realizing high thermoelectric performance in hot-pressed polycrystalline AlxSn1-xSe through band engineering tuning. Journal of Materiomics, 2022, 8, 475-488.	2.8	9
126	SIMULATING TWO- AND THREE-DIMENSIONAL MICROFLOWS BY THE LATTICE BOLTZMANN METHOD WITH KINETIC BOUNDARY CONDITIONS. International Journal of Modern Physics C, 2007, 18, 805-817.	0.8	8

#	Article	IF	CITATIONS
127	SIMULATION OF NEWTONIAN AND NON-NEWTONIAN AXISYMMETRIC FLOW WITH AN AXISYMMETRIC LATTICE BOLTZMANN MODEL. International Journal of Modern Physics C, 2010, 21, 1237-1254.	0.8	8
128	Extended Thermodynamic Approach for Non-Equilibrium Gas Flow. Communications in Computational Physics, 2013, 13, 1330-1356.	0.7	8
129	Phonon Thermal Properties of Heterobilayers with a Molecular Dynamics Study. International Journal of Thermophysics, 2020, 41, 1.	1.0	8
130	Thermal and hydraulic performance of a compact precooler with mini-tube bundles for aero-engine. Applied Thermal Engineering, 2022, 200, 117656.	3.0	8
131	Enhancing thermoelectric performance of K-doped polycrystalline SnSe through band engineering tuning and hydrogen reduction. Journal of Alloys and Compounds, 2022, 899, 163358.	2.8	8
132	How Gas–Solid Interaction Matters in Graphene-Doped Silica Aerogels. Langmuir, 2022, 38, 2238-2247.	1.6	8
133	Synthesis of dispiro[1-benzothiophene-2,3'-pyrrolidine-2',3―indoline]-2â€;3-diones in cycloaddition reaction. Chemistry of Heterocyclic Compounds, 2019, 55, 1044-1049.	0.6	7
134	Role of the microridges on cactus spines. Nanoscale, 2022, 14, 525-533.	2.8	7
135	Hydrostatic Pressure Tuning of Thermal Conductivity for PbTe and PbSe Considering Pressure-Induced Phase Transitions. ACS Omega, 2021, 6, 3980-3990.	1.6	6
136	Design of S–CO2 coal-fired power system based on the multiscale analysis platform. Energy, 2022, 240, 122482.	4.5	6
137	Capacity-dependent configurations of S–CO2 coal-fired boiler by overall analysis with a unified model. Energy, 2022, 245, 123246.	4.5	6
138	LATTICE BOLTZMANN SIMULATION OF ELECTROOSMOTIC MICROMIXING BY HETEROGENEOUS SURFACE CHARGE. International Journal of Modern Physics C, 2010, 21, 261-274.	0.8	5
139	Parametric investigation for suppressing near-field thermal radiation between two spherical nanoparticles. International Communications in Heat and Mass Transfer, 2012, 39, 918-922.	2.9	5
140	Prediction and evolution of the hydraulic tortuosity for unsaturated flow in actual porous media. Microporous and Mesoporous Materials, 2020, 298, 110097.	2.2	5
141	Elastic modulus prediction based on thermal conductivity for silica aerogels and fiber reinforced composites. Ceramics International, 2022, 48, 6691-6697.	2.3	5
142	Experimental Investigation of Fluid Through Porous Media Packed with Single-Diameter and Multi-diameter Spheres. Transport in Porous Media, 2015, 110, 449-459.	1.2	4
143	Surfactant-laden droplet behavior on wetting solid wall with non-Newtonian fluid rheology. Physics of Fluids, 2019, 31, .	1.6	4
144	The effect of chemical functionalisation on nanoporous energy absorption system. Molecular Simulation, 2017, 43, 1442-1447.	0.9	3

#	Article	IF	CITATIONS
145	Synthesis of novel 2'-aryl-4'-hydroxy-4',5,5',6-tetrahydro- 2'H,8H-spiro[indolizine-7,3'-thiophen]-8-one derivatives via sulfa-Michael/aldol cascade reactions. Chemistry of Heterocyclic Compounds, 2020, 56, 42-46.	0.6	3
146	Influence of Participating Radiation on Measuring Thermal Conductivity of Translucent Thermal Insulation Materials with Hot Strip Method. Journal of Thermal Science, 2022, 31, 1023-1036.	0.9	3
147	Finite-temperature force constants are essential for accurately predicting the thermal conductivity of rutile <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">TiO<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:math> . Physical Review Materials. 2022. 6.	0.9	3
148	Lattice Boltzmann Study of Non-Newtonian Blood Flow in Mother and Daughter Aneurysm and a Novel Stent Treatment. Advances in Applied Mathematics and Mechanics, 2014, 6, 165-178.	0.7	2
149	Lubricant-enhanced self-transport of condensed nanodroplets trapped in Wenzel state. Journal of Molecular Liquids, 2022, 348, 118206.	2.3	2
150	Electroosmotic flow of non-Newtonian fluid in microchannels. , 2009, 157, 133-133.		1
151	Pulsating Electroosmotic Flow and Wall Block Mixing in Microchannels. , 2008, , .		0
152	MODELING VISCOUS FLUID DAMPING IN OSCILLATING MICROSTRUCTURES. Modern Physics Letters B, 2009, 23, 241-244.	1.0	0
153	Non-Newtonian Flow Simulation in Microscale Porous Media with the Lattice Boltzmann Method. , 2011, , .		0
154	NON-NEWTONIAN FLOW IN MICROCHANNELS. International Journal of Modern Physics Conference Series, 2014, 34, 1460385.	0.7	0