Houwen Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/616665/publications.pdf Version: 2024-02-01

HOUWEN CHEN

#	Article	IF	CITATIONS
1	Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563, 546-550.	27.8	988
2	Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Acta Materialia, 2018, 149, 350-363.	7.9	287
3	Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials, 2017, 145, 92-105.	11.4	257
4	Interphase boundary segregation of Zn in Mg-Sn-Zn alloys. Scripta Materialia, 2016, 123, 5-8.	5.2	81
5	Direct observation and impact of co-segregated atoms in magnesium having multiple alloying elements. Nature Communications, 2019, 10, 3243.	12.8	78
6	Microstructural Control via Copious Nucleation Manipulated by In Situ Formed Nucleants: Large‧ized and Ductile Metallic Glass Composites. Advanced Materials, 2016, 28, 8156-8161.	21.0	63
7	Unusual solute segregation phenomenon in coherent twin boundaries. Nature Communications, 2021, 12, 722.	12.8	60
8	Machine learning assisted design of γ′-strengthened Co-base superalloys with multi-performance optimization. Npj Computational Materials, 2020, 6, .	8.7	56
9	Metastable precipitate phases in Mg–9.8Âwt%Sn alloy. Acta Materialia, 2018, 144, 590-600.	7.9	54
10	Highly reversible oxygen redox in layered compounds enabled by surface polyanions. Nature Communications, 2020, 11, 3411.	12.8	54
11	Unveiling the Semicoherent Interface with Definite Orientation Relationships between Reinforcements and Matrix in Novel Al ₃ BC/Al Composites. ACS Applied Materials & Interfaces, 2016, 8, 28194-28201.	8.0	53
12	Zn segregation in interface between Mg17Al12 precipitate and Mg matrix in Mg–Al–Zn alloys. Scripta Materialia, 2019, 163, 91-95.	5.2	33
13	Unexpected partial dislocations within stacking faults in a cold deformed Mgâ^'Bi alloy. Acta Materialia, 2020, 188, 328-343.	7.9	30
14	Revisiting building block ordering of long-period stacking ordered structures in Mg–Y–Al alloys. Acta Materialia, 2018, 152, 96-106.	7.9	24
15	Effects of Zn additions on the microstructure and hardness of Mg–9Al–6Sn alloy. Materials Characterization, 2016, 113, 214-221.	4.4	22
16	Atomic scale characterization of complex stacking faults and their configurations in cold deformed Fe42Mn38Co10Cr10 high-entropy alloy. Acta Materialia, 2020, 199, 649-668.	7.9	22
17	Co-segregation of Mg and Zn atoms at the planar η1-precipitate/Al matrix interface in an aged Al–Zn–Mg alloy. Scripta Materialia, 2020, 185, 51-55.	5.2	21
18	Atomic structure and evolution of a precursor phase of Ω precipitate in an Al-Cu-Mg-Ag alloy. Acta Materialia, 2022, 225, 117538.	7.9	21

HOUWEN CHEN

#	Article	IF	CITATIONS
19	Heat-treatable Mg-9Al-6Sn-3Zn extrusion alloy. Journal of Materials Science and Technology, 2018, 34, 284-290.	10.7	20
20	Origin of profuse {11 <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si2.svg"><mml:mover accent="true"><mml:mn>2</mml:mn><mml:mo>Â⁻</mml:mo></mml:mover </mml:math> 1} deformation twins in Mg-Gd alloys. Scripta Materialia, 2021, 191, 62-66.	5.2	20
21	Martensitic transformation induced dislocation walls in Fe42Mn38Co10Cr10 high-entropy alloy. Scripta Materialia, 2021, 201, 113929.	5.2	16
22	Exceptional thermal stability and enhanced hardness in a nanostructured Mg-Gd-Y-Zn-Zr alloy processed by high pressure torsion. Journal of Magnesium and Alloys, 2023, 11, 4589-4602.	11.9	16
23	Twin-like fault in Mg–9.8â€ ⁻ wt%Sn alloy. Scripta Materialia, 2018, 155, 89-93.	5.2	15
24	Enhanced gene delivery of low molecular weight PEI by flower-like ZnO microparticles. Materials Science and Engineering C, 2016, 69, 1367-1372.	7.3	14
25	Enhanced age-hardening response in Mg–Zn–Co alloys with Bi additions. Journal of Alloys and Compounds, 2020, 815, 152419.	5.5	12
26	Precipitation on stacking faults in Mg–9.8wt%Sn alloy. Journal of Materials Science and Technology, 2020, 45, 230-240.	10.7	12
27	On the Equilibrium Intermetallic Phase in Mg-Nd-Ag Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1402-1415.	2.2	10
28	Electron beam irradiation induced metastable phase in a Mgâ^'9.8 wt%Sn alloy. Journal of Materials Science and Technology, 2021, 84, 133-138.	10.7	9
29	Enhanced bonding strength of AZ31B/carbon-fiber-reinforced plastic laminates by anodization treatment in a saturated Na2SiO3 solution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142982.	5.6	7
30	Atomicâ€scale microstructure of Hf ₂ Al ₄ C ₅ ceramic synthesized by spark plasma sintering. Journal of the American Ceramic Society, 2017, 100, 3208-3216.	3.8	3
31	B22-O-02Characterization of precipitates in magnesium alloys using atomic resolution HAADF-STEM and EDS. Microscopy (Oxford, England), 2015, 64, i47.2-i47.	1.5	1
32	Ordered Sn distribution adjacent to the precipitate-matrix interface in a Mg–9.8wt.%Sn alloy. Journal of Magnesium and Alloys, 2022, , .	11.9	1
33	Phase transformation generating coherent twin boundaries in titanium alloys. Materials Letters, 2022, 322, 132515.	2.6	1
34	Sandwich Structure in Al-Cu(-Au) Alloys—Characterization by Atomic-Resolution HAADF-STEM and EDXS-STEM. Microscopy and Microanalysis, 2019, 25, 1700-1701.	0.4	0
35	Intermetallic Phase Formation in Mg–Ag–Nd (QE) and Mg–Ag–Nd–Zn (QEZ) Alloys. Minerals, Metals and Materials Series, 2020, , 71-78.	0.4	0