Gerald Brezesinski

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6166437/publications.pdf
Version: 2024-02-01

Phase behavior and miscibility in lipid monolayers containing glycolipids. Journal of Colloid and
Sciences, 2021, 157, 105620.

Zwitterionic Character and Lipid Composition Determine the Behaviour of
4 Glycosylphosphatidylinositol Fragments in Monolayers. ChemPhysChem, 2021, 22, 757-763.
$2.1 \quad 1$

Two- and Three-Dimensional Physicalâ $€^{\prime \prime}$ Chemical Characterization of CER[AP]: A Study of
Stereochemistry and Chain Symmetry. Journal of Physical Chemistry B, 2021, 125, 9960-9969.
$2.6 \quad 2$

Layers at the Airâ€"Liquid Interface. ChemBioChem, 2020, 21, 241-247.
2.6

2
9 Tuning the Thickness of a Biomembrane by Stapling Diamidophospholipids with Bolalipids. Langmuir, 2020, 36, 8610-8616.
Relationship between structure and molecular interactions in monolayers of specially designed
aminolipids. Nanoscale Advances, 2019, 1, 3529-3536. aminolipids. Nanoscale Advances, 2019, 1, 3529-3536.
4
Enhanced chain packing achieved via putative headgroup ion-triplet formation in binary anionic3.2
Impact of formulation pH on physicochemical protein characteristics at the liquid-air interface
International Journal of Pharmaceutics, 2018, 541, 234-245.

Synthesis and Biophysical Characterization of an Odd-Numbered 1,3-Diamidophospholipid. Langmuir,
20 2018, 34, 3215-3220.
$3.5 \quad 8$

Against the rules: pressure induced transition from high to reduced order. Soft Matter, 2018, 14,
3978-3986.
2.7

Incorporation of mRNA in Lamellar Lipid Matrices for Parenteral Administration. Molecular
Pharmaceutics, 2018, 15, 642-651.
$4.6 \quad 23$

23 Interactions of Cationic Lipids with DNA: A Structural Approach. Langmuir, 2018, 34, 14858-14868.
$3.5 \quad 8$

24 Lysine-based amino-functionalized lipids for gene transfection: 3D phase behaviour and transfection performance. Physical Chemistry Chemical Physics, 2018, 20, 17393-17405.
2.8

9

25 | Immobilization of 2-Deoxy-<scp>d</scp>-ribose-5-phosphate Aldolase in Polymeric Thin Films via the |
| :--- |
| Langmuirâ " Schaefer Technique. ACS Applied Materials \& Interfaces, 2017, 9, 8317-8326. 2 |

A Dendritic Amphiphile for Efficient Control of Biomimetic Calcium Phosphate Mineralization.
Macromolecular Bioscience, 2017, 17, 1600524.
$4.1 \quad 5$

> Vesicle Origami: Cuboid Phospholipid Vesicles Formed by Templateâ€Free Selfâ€Assembly. Angewandte
> 27 Chemie, 2017, 129, 6615-6618.

Vesicle Origami: Cuboid Phospholipid Vesicles Formed by Templateâ€Ғree Selfâ€Assembly. Angewandte
28 Chemie - International Edition, 2017, 56, 6515-6518.
13.8

29

$$
\begin{aligned}
& \text { The interaction of antimicrobial peptides with membranes. Advances in Colloid and Interface Science, } \\
& 2017,247,521-532 \text {. }
\end{aligned}
$$

Sucrose esters as biocompatible surfactants for penetration enhancement: An insight into the
30 mechanism of penetration enhancement studied using stratum corneum model lipids and Langmuir
4.0

14
monolayers. European Journal of Pharmaceutical Sciences, 2017, 99, 161-172.
Cholesteryl Hemisuccinate Monolayers Efficiently Control Calcium Phosphate Nucleation and
Growth. Crystal Growth and Design, 2017, 17, 5764-5774.
$3.0 \quad 4$

Malonic acid based cationic lipids â€" The way to highly efficient DNA-carriers. Advances in Colloid and
14.7

17
32 Interface Science, 2017, 248, 20-34.
$14.7 \quad 17$

Interaction of DNA with Cationic Lipid Mixturesâ€"Investigation at Langmuir Lipid Monolayers.
Langmuir, 2017, 33, 10172-10183.
$3.5 \quad 16$

The film tells the story: Physical-chemical characteristics of IgG at the liquid-air interface. European
Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 396-407.

Influence of calcium on ceramide-1-phosphate monolayers. Beilstein Journal of Nanotechnology, 2016, 7, 236-245.

40 Impact of Structural Differences in Galactocerebrosides on the Behavior of 2D Monolayers.

45	On the Interaction between Digitonin and Cholesterol in Langmuir Monolayers. Langmuir, 2016, 32, 9064-9073.
46	Lightâ€łnduced Water Splitting Causes Highâ€Amplitude Oscillation of pHâ€£ensitive Layerâ€byâ€Łayer Assemblies on TiO <sub〉2</sub〉. Angewandte Chemie - International Edition, 2016, 55, 13001-13004.

47 Preparation of Carbon Nanosheets at Room Temperature. Journal of Visualized Experiments, 2016, , 0.3
Structures of malonic acid diamide/phospholipid composites and their lipoplexes. Soft Matter, 2016, 12,
5854-5866.

Interactions of Two Fragments of the Human Antimicrobial Peptide LL-37 with Zwitterionic and
2.8

3 Anionic Lipid Monolayers. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1141-1159.

The Directional Observation of Highly Dynamic Membrane Tubule Formation Induced by Engulfed
3.3

12
Liposomes. Scientific Reports, 2015, 5, 16559.

Lamellar versus Micellar Structuresâ€"Aggregation Behavior of a Threeâ€€hain Cationic Lipid Designed for Nonviral Polynucleotide Transfer. ChemPhysChem, 2015, 16, 2115-2126.
2.1

11

[^0]2.1

0
55 Rigid Urea and Self-Healing Thiourea Ethanolamine Monolayers. Langmuir, 2015, 31, 1296-1302. 3.5

56 Bilayer Properties of 1,3-Diamidophospholipids. Langmuir, 2015, 31, 1879-1884.
3.5

26
Monolayer Characteristics of 1-Monostearoyl-<i>rac</i>-glycerol at the Airâ€ "Water Interface. Journal
of Physical Chemistry C, 2015, 119, 9934-9946.

58 Interface-controlled calcium phosphate mineralization: effect of oligo(aspartic acid)-rich interfaces. CrystEngComm, 2015, 17, 6901-6913.
2.6
Composites of malonic acid diamides and phospholipids â€" Impact of lipoplex stability on transfection

efficiency. Journal of Controlled Release, 2015, 220, 295-307. \quad| Investigation of Binary Lipid Mixtures of a Three-Chain Cationic Lipid with Phospholipids Suitable for |
| :--- |
| Gene Delivery. Bioconjugate Chemistry, 2015, 26, 2461-2473. |

Structural Characterization of Self-Organized Mono- and Multilayers of
61 Poly[bis(2 2 3,3-tetrafluoropropoxy) phosphazene] at the Air/Water Inter 48, 3327-3336.

Synthesis and study of the complex formation of a cationic alkyl-chain bola amino alcohol with DNA:
in vitro transfection efficiency. Colloid and Polymer Science, 2015, 293, $3167-3175$.

> Composites of malonic acid diamides and phospholipids - Structural parameters for optimal transfection efficiency in A549 cells. European Journal of Lipid Science and Technology, 2014, 116, $1184-1194$.

Photosensitive surfactants: Micellization and interaction with DNA. Journal of Chemical Physics, 2014, 140, 044906.
$3.0 \quad 50$
$14.7 \quad 190$

65 Langmuir monolayers as models to study processes at membrane surfaces. Advances in Colloid and
Interface Science, 2014, 208, 197-213.
14.7

190

66 Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature.
Nature Chemistry, 2014, 6, 468-476.
13.6

97

67 Langmuir monolayers as unique physical models. Current Opinion in Colloid and Interface Science,
2014, 19, 176-182.

Phase Behavior and Molecular Packing of Octadecyl Phenols and their Methyl Ethers at the Air/Water
3.5

11
Interface. Langmuir, 2014, 30, 5780-5789.
.

69 New Micellar Transfection Agents. Langmuir, 2014, 30, 4905-4915.
3.5

9

Phase behavior of selected artificial lipids. Current Opinion in Colloid and Interface Science, 2014, 19,
17-24.
73
74

> Grazing incidence X-ray diffraction studies of condensed double-chain phospholipid monolayers
> formed at the soft air/water interface. Advances in Colloid and Interface Science, 2014, 207, 265-279.
14.7

34

X-ray investigation of monolayers formed at the soft air/water interface. Current Opinion in Colloid and Interface Science, 2014, 19, 216-227.
7.4

57
75
Peptide p160â€Coated Silica Nanoparticles Applied in Photodynamic Therapy. Chemistry - an Asian Journal, 2014, 9, 2126-2131.

1̂23R3-Peptides: design and synthesis of novel peptidomimetics and their self-assembling properties at the airâ€"water interface. Organic and Biomolecular Chemistry, 2013, 11, 5399.
Interactions of Nâ $€^{2}$-acetyl-rifabutin and Nâ€2-butanoyl-rifabutin with lipid bilayers: A synchrotron X-ray study. International Journal of Pharmaceutics, 2013, 453, 560-568. $5.2 \quad 5$
793.51280 Influence of Arenicin on Phase Transitions and Ordering of Lipids in 2D Model Membranes. Langmuir,2013, 29, 12203-12211.Adsorption of the antimicrobial peptide arenicin and its linear derivative to model membranes â€ A81 maximum insertion pressure study. Chemistry and Physics of Lipids, 2013, 167-168, 43-50.Surface activity and structures of two fragments of the human antimicrobial LL-37. Colloids and
$5.0 \quad 17$
83 The Influence of Rifabutin on Human and Bacterial Membrane Models: Implications for Its Mechanism of Action. Journal of Physical Chemistry B, 2013, 117, 6187-6193.Langmuir Monolayers of Monocationic Lipid Mixed with Cholesterol or Fluorocholesterol: DNA84 Adsorption Studies. Langmuir, 2013, 29, 1920-1925.
85 Monolayer Properties of 1,3-Diamidophospholipids. Langmuir, 2013, 29, 9428-9435. 3.5 20From Two-Dimensional to Three-Dimensional at the Air/Water Interface: The Self-Aggregation of the3.516Acridine Dye in Mixed Monolayers. Langmuir, 2013, 29, 4796-4805.Evaluation of the Structureâ€"Activity Relationship of Rifabutin and Analogs: A Drugâ€"Membrane Study.ChemPhysChem, 2013, 14, 2808-2816.
91 The impact of lipid composition on the stability of the tear fluid lipid layer. Soft Matter, 2012, 8, 5826. 40
CaCO<sub> $3</$ sub> Mineralization under $\hat{2}$ 2-Sheet Forming Peptide Monolayers. Crystal Growth and
Design, 2012, 12, 2299-2305.
Tuning of the Hydrophobic and Hydrophilic Interactions in 2D Chiral Domains. Journal of Physical
Chemistry C, 2012, 116, 19925-19933.
Peptideâ€"surfactant interactions: Consequences for the amyloid-beta structure. Biochemical and
Biophysical Research Communications, 2012, 420, 136-140.

95	Modeling the influence of adsorbed DNA on the lateral pressure and tilt transition of a zwitterionic lipid monolayer. Physical Chemistry Chemical Physics, 2012, 14, 10613.	2.8	17
96	Langmuir Monolayers of an Inclusion Complex Formed by a New Calixarene Derivative and Fullerene. Langmuir, 2012, 28, 12114-12121.	3.5	14
97	Polyoxometalate Surfactants as Unique Molecules for Interfacial Self-Assembly. Journal of Physical Chemistry Letters, 2012, 3, 322-326.	4.6	41
98	Polymer-capped magnetite nanoparticles change the 2D structure of DPPC model membranes. Soft Matter, 2012, 8, 7952.	2.7	28
99	Mechanism of Action of Cyclic Oligosquaramides on DPPC Phospholipid Monolayers. ChemPhysChem, 2012, 13, 453-458.	2.1	6

100 Chiral Textures inside 2D Achiral Domains. Journal of the American Chemical Society, 2011, 133,
19028-19031.
101 Mixed DPPC/DPTAP Monolayers at the Air/Water Interface: Influence of Indolilo-3-acetic Acid and
101 Selenate lons on the Monolayer Morphology. Langmuir, 2011, 27, 10886-10893.

$3.5 \quad 29$
102 Synchrotron SAXS and WAXS Study of the Int
2.6 42
103 NSAIDs Interactions with Membranes: A Biophysical Approach. Langmuir, 2011, 27, 10847-10858. 3.5 87The Effect of the Reduction of the Available Surface Area on the Hemicyanine Aggregation in LaterallyOrganized Langmuir Monolayers. Journal of Physical Chemistry C, 2011, 115, 9059-9067.
$3.1 \quad 9$
109 Lipidâ€"Drug Interaction: Biophysical Effects of Tolmetin on Membrane Mim 2.6 52Physicalâ€"chemical characterization of novel cationic transfection lipids and the binding of model2.722
110 DNA at the airâ€"water interface. Soft Matter, 2011, 7, 10162.3.542
Triggers for $\hat{1}$-Sheet Formation at the Hydrophobicâ€"Hydrophilic Interface: High Concentration, In-Plane
111 Orientational Order, and Metal Ion Complexation. Langmuir, 2011, 27, 14218-14231.Structureâ $€^{\prime F}$ Function Relationships of New Lipids Designed for DNA Transfection. ChemPhysChem, 2011,2.119
12, 2328-2337.
Amyloidogenic Peptides at Hydrophobicâ€"Hydrophilic Interfaces: Coordination Affinities and the113 Chelate Effect Dictate the Competitive Binding of Cu<sup> $2+\langle/$ sup \rangle and $\mathrm{Zn}\langle$ sup $\rangle 2+\langle/$ sup \rangle.$2.1 \quad 10$ChemPhysChem, 2011, 12, 2225-2229.
Synthesis and DNA transfection properties of new head group modified malonic acid diamides.International Journal of Pharmaceutics, 2011, 409, 46-56.$5.2 \quad 12$
115 Molecular mechanisms of phosphatidylcholine monolayer solidification due to hydroxyl radicals. 2.7 14
115 Soft Matter, 2011, 7, 6467.3.748
Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2
against<i>Escherichia coli</i>and<i>Proteus mirabilis</i〉. Biochemical Journal, 2010, 427, 477-488. 116
3.6 26Novel Cationic Lipids Based on Malonic Acid Amides Backbone: Transfection Efficacy and Cell Toxicity$117 \quad \begin{aligned} & \text { Novel Cationic Lipids Based on Malonic Acid Amides Bac } \\ & \text { Properties. Bioconjugate Chemistry, 2010, 21, 696-708. }\end{aligned}$

A biophysical approach to phospholipase A2 activity and inhibition by anti-inflammatory drugs.

A biophysical approach to phospholipase A2 activity and inhibition by anti-inflammatory drugs.

A biophysical approach to phospholipase A2 activity and inhibition by anti-inflammatory drugs.
118 Biophysical Chemistry, 2010, 152, 109-117.
118 Biophysical Chemistry, 2010, 152, 109-117.
118 Biophysical Chemistry, 2010, 152, 109-117. 2.8 2.8 2.8 13 13 13
Impact of the long chain $\ddot{\%} \%$-acylceramides on the stratum corneum lipid nanostructure. Part 1:
119 Thermotropic phase behaviour of CER[EOS] and CER[EOP] studied using X-ray powder diffraction and FT-Raman spectroscopy. Chemistry and Physics of Lipids, 2010, 163, 42-50.3.227
120 Conformational Properties of Arenicins: From the Bulk to the Airâ€"Water Interface. ChemPhysChem, 2.1 13 2010, 11, 3262-3268.Biocompatible Magnetite Nanoparticles Trapped at the Air/Water Interface. ChemPhysChem, 2010, 11,2.125
3585-3588.Controlling Amyloidâ€̂̂² Peptide(lấ"42) Oligomerization and Toxicity by Fluorinated Nanoparticles.2.642
ChemBioChem, 2010, 11, 1905-1913.4.135Randomization of Amyloidâ $\hat{\ell}^{\hat{2}}$ â $€ P e p t i d e(1 a ̂ € 42)$ Conformation by Sulfonated and Sulfated NanoparticlesReduces Aggregation and Cytotoxicity. Macromolecular Bioscience, 2010, 10, 1152-1163.

The influence of hydrophilic spacers on the phase behavior of ether lipids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 106-112.
Adsorption of GST-PI3Kî3 at the Air-Buffer Interface and at Substrate and Nonsubstrate Phospholipid
Monolayers. Biophysical Journal, 2009, 96, 1016-1025.
The conformation of fusogenic B18 peptide in surfactant solutions. Journal of Peptide Science, 2008,14, 436-441.
135 Interfacial properties and structural analysis of the antimicrobial peptide NKâ€2. Journal of Peptide Science, 2008, 14, 510-517.$1.4 \quad 22$1670-1672.2.1
Structure of the Langmuir Monolayers with Fluorinated Ethyl Amide and Ethyl Ester Polar Heads 3.5 23
Creating Dipole Potentials of Opposite Sign. Langmuir, 2008, 24, 8001-8007.
2.6 19Liquidâ $E^{\text {sliquid immiscibility in model membranes activates secretory phospholipase A2. Biochimica Et }}$Biophysica Acta - Biomembranes, 2008, 1778, 166-174.Binding of Nonsteroidal Anti-inflammatory Drugs to DPPC:â€\%o Structure and Thermodynamic Aspects.3.577Langmuir, 2008, 24, 4132-4139.

Do unsaturated phosphoinositides mix with ordered phosphadidylcholine model membranes?. Journal of Lipid Research, 2008, 49, 1918-1925.

Investigation of the Protonation State of Novel Cationic Lipids Designed for Gene Transfection.
Journal of Physical Chemistry B, 2007, 111, 13845-13850.

Impact of Aluminum on the Oxidation of Lipids and Enzymatic Lipolysis in Monomolecular Films at the
146 Air/Water Interface. Langmuir, 2007, 23, 3338-3348.
3.5 17

Physicochemical Investigation of a Lipid with a New Core Structure for Gene Transfection: \hat{A}
2-Ámino-3-hexadecyloxy-2-(hexadecyloxymethyl)propan-1-ol. Langmuir, 2007, 23, 3919-3926.
3.5

Evidence for a Reverse U-Shaped Conformation of Single-Chain Bolaamphiphiles at the Airâ^Nater Interface. Langmuir, 2007, 23, 6063-6069.

Adsorption of the Fusogenic Peptide B18 onto Solid Surfaces: \hat{A} Insights into the Mechanism of Peptide
Assembly. Langmuir, 2007, 23, 5022-5028.

Phospholipase D Activity Is Regulated by Product Segregation and the Structure Formation of Phosphatidic Acid within Model Membranes. Biophysical Journal, 2007, 93, 2373-2383.
0.5

Elemental Analysis within the Electrical Double Layer Using Total Reflection X-ray Fluorescence Technique. Journal of Physical Chemistry B, 2007, 111 , 3927-3934.

Penetration of the Antimicrobial Peptide Dicynthaurin into Phospholipid Monolayers at the Liquidâ $\Theta^{\prime \prime} A i r$ Interface. ChemBioChem, 2007, 8, 1038-1047.

Physical study of the arrangement of pure catanionic glycolipids and interaction with phospholipids,
153 in support of the optimisation of anti-HIV therapies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303, 55-72.

Electrostatic interactions between polyelectrolyte and amphiphiles in two- and three-dimensional
154 systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303, 79-88.
4.7

13

155 Adsorption of Amyloid $\hat{\imath}^{2}$ (1-40) Peptide at Liquid Interfaces. Zeitschrift Fur Physikalische Chemie, 2007, 221, 95-111.

Modifying dipalmitoylphosphatidylcholine monolayers by n-hexadecanol and dipalmitoylglycerol. Chemistry and Physics of Lipids, 2007, 145, 119-127.

Breakdown of the Gouyâ’Chapman Model for Highly Charged Langmuir Monolayers: \hat{A} Counterion Size Effect. Journal of Physical Chemistry B, 2006, 110, 10032-10040.

Characterization of Anomalous Flow and Phase Behavior in a Langmuir Monolayer of 2-Hydroxy-tetracosanoic Acidâ€. Journal of Physical Chemistry B, 2006, 110, 22245-22250.

Interactions of a Fungistatic Antibiotic, Griseofulvin, with Phospholipid Monolayers Used as Models
of Biological Membranes. Langmuir, 2006, 22, 7701-7711.

Weak First-Order Tilting Transition in Monolayers of Mono- and Bipolar Docosanol Derivativesâ€.
169 Hydration properties of N -($(\pm \pm$-hydroxyacyl)-sphingosine: X-ray powder diffraction and FTâ€"Ramanspectroscopic studies. Chemistry and Physics of Lipids, 2005, 136, 13-22.$3.2 \quad 14$
Hydrolysis Reaction Analysis ofl-Ît-Distearoylphosphatidylcholine Monolayer Catalyzed by
170 Phospholipase A2with Polarization-Modulated Infrared Reflection Absorption Spectroscopy. 3.5 23 Langmuir, 2005, 21, 1051-1054.
171 Unconventional Air-Stable Interdigitated Bilayer Formed by 2,3-Disubstituted Fatty Acid Methyl Esters.
Journal of Physical Chemistry B, 2005, 109, 19866-19875.$2.6 \quad 16$
Modifying Calf Lung Surfactant by Hexadecanol. Langmuir, 2005, 21, 1028-1035.3.535
173 Langmuir and Langmuir-Blodgett Films of Metallosupramolecular Polyelectrolyte-Amphiphile
Complexes. Langmuir, 2005, 21, 5901-5906.
26
Adsorption of Amyloid Beta (1-40) Peptide to Phosphatidylethanolamine Monolayers. ChemPhysChem, 2.1 73
2004, 5, 1185-1190.
3.2 26Miscibility of DPPC and DPPA in monolayers at the air/water interface. Chemistry and Physics of Lipids,
2004, 131, 71-80.4.710Monolayers of mono- and bipolar palmitic acid derivatives. Colloids and Surfaces A: Physicochemicaland Engineering Aspects, 2004, 250, 57-65.Adsorption of DNA to zwitterionic DMPE monolayers mediated by magnesium ions. Physical Chemistry2.835Chemical Physics, 2004, 6, 5551.

183 In-Plane Structures of Synthetic Oligolactose Lipid Monolayers-Impact of Saccharide Chain Length. ChemPhysChem, 2003, 4, 1316-1322.

Self-Organization of an L-Ether-amide Phospholipid in Large Two-Dimensional Chiral Crystals.

185	Direct Observations of the Cleavage Reaction of an L-DPPC Monolayer Catalyzed by Phospholipase A2 and Inhibited by an Indole Inhibitor at the Air/Water Interface. ChemBioChem, 2003, 4, 299-305.	2.6
186	Interaction between phospholipids and new Gemini catanionic surfactants having anti-HIV activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 228, 3-16.	4.7
187	Langmuir monolayers to study interactions at model membrane surfaces. Advances in Colloid and Interface Science, 2003, 100-102, 563-584.	14.7
246		

188 Successive Multilayer Formation of Cyclolinear Polyorganosiloxanes Floating at the Airâ^Water
191 Generic Phase Behavior of Branched-Chain Phospholipid Monolayers. Chemistry - A European Journal,2002, 8, 3203.
$3.3 \quad 39$
192 Changes in Model Lung Surfactant Monolayers Induced by Palmitic Acid. Langmuir, 2001, 17, 4641-4648.3.583
193 Effect of Sugars and Dimethyl Sulfoxide on the Structure and Phase Behavior of DPPC Monolayers. 3.5 37
Langmuir, 2001, 17, 1209-1214.Dipalmitoyl-Phosphatidylcholine/Phospholipase D Interactions Investigated with194 Polarization-Modulated Infrared Reflection Absorption Spectroscopy. Biophysical Journal, 2001, 80,0.5749-754.
195 Langmuir Monolayers with Fluorinated Groups in the Hydrophilic Head:â€\% 2. Morphology and Molecular
Structure of Trifluoroethyl Behenate and Ethyl Behenate Monolayers. Langmuir, 2001, 17, 4581-4592.3.510Stability and Structures of Liquid Crystalline Phases Formed by Branched-Chain Phospholipid
199 Dynamic Observations of the Hydrolysis of a DPPC Monolayer at the Air/Water Interface Catalyzed by13.843Phospholipaseâ€...A2. Angewandte Chemie - International Edition, 2000, 39, 3059-3062.$2.8 \quad 8$200 Methyl-branched glycerophosphocholines: monolayer disorder and its effect on the rate ofphospholipase A2 catalyzed hydrolysis. Physical Chemistry Chemical Physics, 2000, 2, 4605-4608.

201 Structures and phase transitions in aqueous dispersions of branched-chain 2.8
glycerophosphoethanolamines. Physical Chemistry Chemical Physics, 2000, 2, 4509-45 14.8
Influence of model membrane structure on phospholipase D activity. Physical Chemistry Chemical
Grazing Incidence Diffraction and Brewster-Angle Microscope Studies of Mixtures of Hexadecanoic
203 Acid and Methyl Hexadecanoate:â€\%o The Unexpected Appearance of a Phase with Nearest-Neighbor Tilt. $2.6 \quad 13$ Journal of Physical Chemistry B, 2000, 104, 10053-10058.
Hydrogen-Bond-Induced Chiral Discrimination in Monolayers of Bipolar MethylDihydroxyoctadecanoatesâ $€, a ̂ €_{\mathrm{i}}, \hat{\text { Â§. Langmuir, 2000, 16, 8937-8945. }}$$3.5 \quad 12$
205 Influence of Surface Properties of Mixed Monolayers on Lipolytic Hydrolysis. Langmuir, 2000, 16, 2779-2788. 3.5 29
206 The energy-dispersive reflectometer/diffractometer at BESSY-I. Measurement Science and Technology, 1999, 10, 354-361.2.623
207 Disorder in Langmuir Monolayers:â€\% 2. Relation between Disordered Alkyl Chain Packing and the Loss of Long-Range Tilt Orientational Order. Langmuir, 1999, 15, 2901-2910. 3.5 35
208 Influence of side-chain length on phospholipid ordering in two dimensions. Chemistry and Physics ofLipids, 1998, 94, 251-260.
3.2 17
209 The structure of a methylâ€branched phospholipid monolayer in contact with hexadecane. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 751-755.1.516Phase Transitions and Structures in Monolayers of Water Soluble and Insoluble Amphiphilic AcidAmides. Chemical Engineering and Technology, 1998, 21, 44-48.3.021
Structure of octadecanol monolayers: An x-ray diffraction study. Journal of Chemical Physics, 1998, 211 109, 2006-2010.4.874
212 Polyelectrolyte Coupling to a Charged Lipid Monolayer. Macromolecules, 1997, 30, 2337-2342.
0.7 25Structure features and phase behaviour of amphiphilic N-tetradecyl-1̂2-hydroxy-propionic acid amidemonolayers. Supramolecular Science, 1997, 4, 391-397.Self-organization of amphiphilic N-acylated linear polyethyleneimines: investigation of a reversiblemonolayer collapse. Thin Solid Films, 1996, 284-285, 304-307.
217 Domain formation in monolayers. Molecular Membrane Biology, 1995, 12, 29-38. 2.0 47218 Phospholipid and Protein Monolayers. Japanese Journal of Applied Physics, 1995, 34, 3906-3913.
219 incidence X-ray diffraction. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter,0.418Atomic, Molecular and Chemical Physics, Biophysics, 1994, 16, 1487-1492.
Domain shapes and monolayer structures of triple-chain phospholipids on water. Nuovo Cimento0.45
Biophysics, 1994, 16, 1537-1544.
Influence of a hydrophilic spacer on the structure of a phospholipid monolayer. Nuovo Cimento Della$0.4 \quad 9$
1994, 16, 1545-1550.Properties of unusual phospholipids: I. Synthesis, monolayer investigations and calorimetry of222 diacylglycerophosphocholines containing monoacetylenic acyl chains. Chemistry and Physics of3.2Lipids, 1994, 70, 187-198.
223 Condensed phases in monolayers of a triple-chain lecithin on water. Physica B: Condensed Matter, 1994, 198, 146-149. 2.7 13
The protective effect of free and membrane-bound cryoprotectants during freezing and freeze-dryingof liposomes. Journal of Controlled Release, 1994, 30, 105-116.
Convex-concave curvatures in bilayers of dipalmitoylphosphatidylcholine and cholesterol induced by
225 amphotericin B/deoxycholate after prolonged storage. Biochimica Et Biophysica Acta - Biomembranes,2.6131994, 1190, 9-19.Separation of Enantiomers in a Monolayer of Racemic 3â€Hexadecylâ€oxyâ€propaneâ€ d, 2â€diol. Zeitschrift FurElektrotechnik Und Elektrochemie, 1993, 97, 1394-1398.
227 Hexagonal Columnar.<i>cis, cis</i>-(3,5-dihydroxycyclohexyl)-3,4,5-tris(alkoxy)benzoates Thermal behaviour and water absorption. Liquid Crystals, 1991, 10, 169-183.
2.2 26
228 Correlations between chemical structure and chain packing in twoâ€•and threeâ€dimensional systems.Makromolekulare Chemie Macromolecular Symposia, 1991, 46, 47-54.
229 Polymorphic domains in monolayers of isomeric triple-chain phospholipids. Makromolekulare Chemie0.62Macromolecular Symposia, 1991, 46, 457-461.

Vergleichende Untersuchungen an Monoâ€•und Bischichtsystemen von drei methylverzweigten
48, 245-254.

Influence of $\hat{I} \pm$-branched fatty acid chains on the thermotropic behaviours of 1-O-acyl-2-O-hexadecyl-glycerophosphocholines. Chemistry and Physics of Lipids, 1987, 43, 257-264.

[^0]: Lamellar versus Micellar Structuresâ€"Aggregation Behavior of a Threeâ€Chain Cationic Lipid Designed
 for Nonviral Polynucleotide Transfer. ChemPhysChem, 2015, 16, 2029-2029.

