
Michael Dorr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6166308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Validation of Computer-Adaptive Contrast Sensitivity as a Tool to Assess Visual Impairment in Multiple Sclerosis Patients. Frontiers in Neuroscience, 2021, 15, 591302.	1.4	11
2	Psychophysical Validation of a Novel Active Learning Approach for Measuring the Visual Acuity Behavioral Function. Translational Vision Science and Technology, 2021, 10, 1.	1.1	5
3	Supersaliency: A Novel Pipeline for Predicting Smooth Pursuit-Based Attention Improves Generalisability of Video Saliency. IEEE Access, 2020, 8, 1276-1289.	2.6	2
4	From Gaussian blobs to naturalistic videos: Comparison of oculomotor behavior across different stimulus complexities. Journal of Vision, 2020, 20, 26.	0.1	8
5	Following Forrest Gump: Smooth pursuit related brain activation during free movie viewing. NeuroImage, 2020, 216, 116491.	2.1	10
6	Active learning for visual acuity testing. , 2019, , .		9
7	Binocular Summation and Suppression of Contrast Sensitivity in Strabismus, Fusion and Amblyopia. Frontiers in Human Neuroscience, 2019, 13, 234.	1.0	23
8	Visual exploration of emotional faces in schizophrenia using masks from the Japanese Noh theatre. Neuropsychologia, 2019, 133, 107193.	0.7	2
9	Characterizing and automatically detecting smooth pursuit in a large-scale ground-truth data set of dynamic natural scenes. Journal of Vision, 2019, 19, 10.	0.1	12
10	1D CNN with BLSTM for automated classification of fixations, saccades, and smooth pursuits. Behavior Research Methods, 2019, 51, 556-572.	2.3	70
11	Free visual exploration of natural movies in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 2019, 269, 407-418.	1.8	15
12	360-aware saliency estimation with conventional image saliency predictors. Signal Processing: Image Communication, 2018, 69, 43-52.	1.8	50
13	New Precision Metrics for Contrast Sensitivity Testing. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 919-925.	3.9	22
14	Evaluation of the precision of contrast sensitivity function assessment on a tablet device. Scientific Reports, 2017, 7, 46706.	1.6	27
15	A novel measure to determine viewing priority and its neural correlates in the human brain. Journal of Vision, 2016, 16, 3.	0.1	8
16	Sensitivity to gaze-contingent contrast increments in naturalistic movies: An exploratory report and model comparison. Journal of Vision, 2015, 15, 3.	0.1	5
17	Using 10AFC to further improve the efficiency of the quick CSF method. Journal of Vision, 2015, 15, 2.	0.1	62
18	Development of pattern vision following early and extended blindness. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2035-2039.	3.3	84

MICHAEL DORR

#	Article	IF	CITATIONS
19	Large-Scale Optimization of Hierarchical Features for Saliency Prediction in Natural Images. , 2014, , .		277
20	Learning to see: Guiding students' attention via a Model's eye movements fosters learning. Learning and Instruction, 2013, 25, 62-70.	1.9	165
21	Peri-Saccadic Natural Vision. Journal of Neuroscience, 2013, 33, 1211-1217.	1.7	45
22	Rapid and Reliable Assessment of the Contrast Sensitivity Function on an iPad. , 2013, 54, 7266.		88
23	Gaze guidance reduces the number of collisions with pedestrians in a driving simulator. ACM Transactions on Interactive Intelligent Systems, 2012, 1, 1-14.	2.6	25
24	Eye movement prediction and variability on natural video data sets. Visual Cognition, 2012, 20, 495-514.	0.9	12
25	Impact of dynamic bottom-up features and top-down control on the visual exploration of moving real-world scenes in hemispatial neglect. Neuropsychologia, 2012, 50, 2415-2425.	0.7	41
26	Intrinsic Dimensionality Predicts the Saliency of Natural Dynamic Scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34, 1080-1091.	9.7	40
27	Colour Saliency on Video. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 601-606.	0.2	2
28	Safer Driving with Gaze Guidance. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 581-586.	0.2	2
29	Contribution of Spatio-temporal Intensity Variation to Bottom-Up Saliency. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 469-474.	0.2	1
30	Learned saliency transformations for gaze guidance. , 2011, , .		4
31	Eye Movements Show Optimal Average Anticipation with Natural Dynamic Scenes. Cognitive Computation, 2011, 3, 79-88.	3.6	16
32	Efficient coding and multiple motions. Vision Research, 2010, 50, 2190-2199.	0.7	2
33	Variability of eye movements when viewing dynamic natural scenes. Journal of Vision, 2010, 10, 28-28.	0.1	318
34	A Learned Saliency Predictor for Dynamic Natural Scenes. Lecture Notes in Computer Science, 2010, , 52-61.	1.0	7
35	Efficient visual coding and the predictability of eye movements on natural movies. Spatial Vision, 2009, 22, 397-408.	1.4	32
36	The contribution of low-level features at the centre of gaze to saccade target selection. Vision Research, 2009, 49, 2918-2926.	0.7	4

#	Article	IF	CITATIONS
37	Eye movement predictions on natural videos. Neurocomputing, 2006, 69, 1996-2004.	3.5	26
38	Guiding Eye Movements for Better Communication and Augmented Vision. Lecture Notes in Computer Science, 2006, , 1-8.	1.0	9