Eunice W Q Yeap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6166220/publications.pdf

Version: 2024-02-01

304743 330143 56 1,508 22 37 citations h-index g-index papers 63 63 63 2159 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Room Temperature Batch and Continuous Flow Synthesis of Water-Stable Covalent Organic Frameworks (COFs). Chemistry of Materials, 2016, 28, 5095-5101.	6.7	228
2	Highly efficient CO ₂ capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers. Journal of Materials Chemistry A, 2019, 7, 4549-4560.	10.3	108
3	Monodisperse Polymeric Ionic Liquid Microgel Beads with Multiple Chemically Switchable Functionalities. Langmuir, 2013, 29, 9535-9543.	3.5	68
4	Spherical Crystallization of Glycine from Monodisperse Microfluidic Emulsions. Crystal Growth and Design, 2012, 12, 3977-3982.	3.0	61
5	Controlling bubbles using bubblesâ€"microfluidic synthesis of ultra-small gold nanocrystals with gas-evolving reducing agents. Lab on A Chip, 2012, 12, 1807.	6.0	54
6	Embedded droplet printing in yield-stress fluids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5671-5679.	7.1	52
7	Automated synthesis of prexasertib and derivatives enabled by continuous-flow solid-phase synthesis. Nature Chemistry, 2021, 13, 451-457.	13.6	51
8	Deep Learning Accelerated Gold Nanocluster Synthesis. Advanced Intelligent Systems, 2019, 1, 1900029.	6.1	49
9	Simultaneous Spherical Crystallization and Co-Formulation of Drug(s) and Excipient from Microfluidic Double Emulsions. Crystal Growth and Design, 2014, 14, 140-146.	3.0	47
10	Assessing the potential of CO 2 utilization with an integrated framework for producing power and chemicals. Journal of CO2 Utilization, 2017, 19, 49-57.	6.8	43
11	Recent Advances in Co-processed APIs and Proposals for Enabling Commercialization of These Transformative Technologies. Molecular Pharmaceutics, 2020, 17, 2232-2244.	4.6	41
12	Microfluidic continuous magnetophoretic protein separation using nanoparticle aggregates. Microfluidics and Nanofluidics, 2011, 11, 429-438.	2.2	39
13	Oxidant free conversion of alcohols to nitriles over Ni-based catalysts. Catalysis Science and Technology, 2019, 9, 86-96.	4.1	38
14	Dynamically tunable nanoparticle engineering enabled by short contact-time microfluidic synthesis with a reactive gas. RSC Advances, 2013, 3, 2897.	3.6	29
15	Highly Selective, Kinetically Driven Polymorphic Selection in Microfluidic Emulsion-Based Crystallization and Formulation. Crystal Growth and Design, 2015, 15, 212-218.	3.0	28
16	Electrically controlled mass transport into microfluidic droplets from nanodroplet carriers with application in controlled nanoparticle flow synthesis. Lab on A Chip, 2018, 18, 1330-1340.	6.0	27
17	Rapid nanoparticle-catalyzed hydrogenations in triphasic millireactors with facile catalyst recovery. Green Chemistry, 2014, 16, 4654-4658.	9.0	26
18	Microfluidic Fabrication of Multiâ€Drugâ€Loaded Polymeric Microparticles for Topical Glaucoma Therapy. Particle and Particle Systems Characterization, 2015, 32, 567-572.	2.3	26

#	Article	lF	Citations
19	Dualâ€Stage Continuousâ€Flow Seedless Microfluidic Synthesis of Anisotropic Gold Nanocrystals. Particle and Particle Systems Characterization, 2014, 31, 429-432.	2.3	24
20	Robust, non-fouling liters-per-day flow synthesis of ultra-small catalytically active metal nanoparticles in a single-channel reactor. Reaction Chemistry and Engineering, 2017, 2, 636-641.	3.7	24
21	Perspective article: Flow synthesis of functional materials. Journal of Flow Chemistry, 2017, 7, 96-105.	1.9	24
22	Prediction of the shape and pressure drop of Taylor bubbles in circular tubes. Microfluidics and Nanofluidics, 2015, 19, 1221-1233.	2.2	23
23	Co-Micellization Behavior in Poloxamers: Dissipative Particle Dynamics Study. Journal of Physical Chemistry B, 2015, 119, 572-582.	2.6	22
24	Mesoscale triphasic flow reactors for metal catalyzed gas–liquid reactions. Reaction Chemistry and Engineering, 2019, 4, 1331-1340.	3.7	21
25	Direct visualization of the ouzo zone through aggregation-induced dye emission for the synthesis of highly monodispersed polymeric nanoparticles. Materials Chemistry Frontiers, 2019, 3, 1375-1384.	5.9	21
26	Multiâ€Fidelity Highâ€Throughput Optimization of Electrical Conductivity in P3HT NT Composites. Advanced Functional Materials, 2021, 31, 2102606.	14.9	20
27	Microfluidic Extractive Crystallization for Spherical Drug/Drug-Excipient Microparticle Production. Organic Process Research and Development, 2019, 23, 375-381.	2.7	17
28	Facile synthesis of lanthanide doped yttria nanophosphors by a simple microplasma-assisted process. Reaction Chemistry and Engineering, 2019, 4, 891-898.	3.7	17
29	Continuous Flow Synthesis of Superparamagnetic Nanoparticles in Reverse Miniemulsion Systems. Colloids and Interface Science Communications, 2019, 28, 1-4.	4.1	17
30	Development of highly reliable SERSâ€active photonic crystal fiber probe and its application in the detection of ovarian cancer biomarker in cyst fluid. Journal of Biophotonics, 2020, 13, e201960120.	2.3	17
31	Dynamics and Morphological Outcomes in Thin-Film Spherical Crystallization of Glycine from Microfluidic Emulsions: Experimental Studies and Modeling. Crystal Growth and Design, 2014, 14, 3485-3492.	3.0	16
32	Investigations on the Influence of Flow Migration on Flow and Heat Transfer in Oblique Fin Microchannel Array. Journal of Heat Transfer, 2016, 138, .	2.1	16
33	Functionalized Silica Nanoparticles as Additives for Polymorphic Control in Emulsion-Based Crystallization of Glycine. Crystal Growth and Design, 2013, 13, 2455-2461.	3.0	15
34	Bistability in droplet traffic at asymmetric microfluidic junctions. Biomicrofluidics, 2013, 7, 44123.	2.4	15
35	Bottom-up Structural Design of Crystalline Drug-Excipient Composite Microparticles via Microfluidic Droplet-based Processing. Crystal Growth and Design, 2017, 17, 3030-3039.	3.0	15
36	Continuous Flow Droplet-Based Crystallization Platform for Producing Spherical Drug Microparticles. Organic Process Research and Development, 2019, 23, 93-101.	2.7	15

#	Article	IF	CITATIONS
37	Kinetics of Chain Exchange between Diblock Copolymer Micelles. Macromolecular Theory and Simulations, 2016, 25, 383-391.	1.4	14
38	Co-micellization behavior of triblock copolymers in the presence of hydrophobic drug molecules: A simulation study. Colloids and Surfaces B: Biointerfaces, 2016, 148, 299-307.	5.0	14
39	Droplet microfluidics with a nanoemulsion continuous phase. Lab on A Chip, 2016, 16, 2694-2700.	6.0	14
40	Millifluidic synthesis of amorphous drug-polysaccharide nanoparticle complex with tunable size intended for supersaturating drug delivery applications. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112, 196-203.	4.3	14
41	Multi-color lasing in chemically open droplet cavities. Scientific Reports, 2018, 8, 14088.	3.3	14
42	POD-DEIM model order reduction technique for model predictive control in continuous chemical processing. Computers and Chemical Engineering, 2020, 133, 106638.	3.8	13
43	Dropletâ€Templated Antisolvent Spherical Crystallization of Hydrophilic and Hydrophobic Drugs with an in situ Formed Binder. Advanced Healthcare Materials, 2018, 7, 1700797.	7.6	11
44	Cloud-inspired multiple scattering for light intensified photochemical flow reactors. Reaction Chemistry and Engineering, 2020, 5, 1058-1063.	3.7	11
45	Encapsulation of Lutein via Microfluidic Technology: Evaluation of Stability and In Vitro Bioaccessibility. Foods, 2021, 10, 2646.	4.3	10
46	Continuous Embedded Droplet Printing in Yieldâ€Stress Fluids for Pharmaceutical Drug Particle Synthesis. Advanced Materials Technologies, 2021, 6, 2001245.	5.8	7
47	Control of Drug-Excipient Particle Attributes with Droplet Microfluidic-based Extractive Solidification Enables Improved Powder Rheology. Pharmaceutical Research, 2022, 39, 411.	3.5	7
48	Hierarchical materials synthesis at soft all-aqueous interfaces. Soft Matter, 2012, 8, 3924.	2.7	5
49	Hydrogel Microparticleâ€Templated Antiâ€Solvent Crystallization of Smallâ€Molecule Drugs. Advanced Healthcare Materials, 2022, 11, e2102252.	7.6	5
50	Weaving colloidal webs around droplets: spontaneous assembly of extended colloidal networks encasing microfluidic droplet ensembles. Soft Matter, 2016, 12, 8654-8660.	2.7	3
51	Microfluidics-enabled particle engineering of monodisperse solid lipid microparticles with uniform drug loading and diverse solid-state outcomes. International Journal of Pharmaceutics, 2021, 596, 120230.	5.2	3
52	Spherical Crystalline Anti-Retroviral Drug Particles with Tunable Microstructure. Crystal Growth and Design, 2018, 18, 5727-5732.	3.0	2
53	Highâ€ŧhroughput and Highâ€speed Absorbance Measurements in Microfluidic Droplets using Hyperspectral Imaging. Chemistry Methods, 0, , .	3.8	1
54	3D-printed capillary force trap reactors (CFTRs) for multiphase catalytic flow chemistry. Reaction Chemistry and Engineering, 0, , .	3.7	1

#	#	Article	IF	CITATIONS
5	55	Rapid, Automated Measurement of Dynamic Size Distributions and Size-Dependent Growth Rates of Crystal Ensembles within Microfluidic Flow Cells. Crystal Growth and Design, 2022, 22, 2869-2879.	3.0	1
5	56	Particle Synthesis: Continuous Embedded Droplet Printing in Yieldâ€Stress Fluids for Pharmaceutical Drug Particle Synthesis (Adv. Mater. Technol. 4/2021). Advanced Materials Technologies, 2021, 6, 2170020.	5.8	0