Max Moorkamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6166007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 2011, 184, 477-493.	2.4	211
2	Joint inversion of receiver functions, surface wave dispersion, and magnetotelluric data. Journal of Geophysical Research, 2010, 115, .	3.3	70
3	Three-dimensional inversion of magnetotelluric impedance tensor data and full distortion matrix. Geophysical Journal International, 2015, 202, 464-481.	2.4	58
4	Joint inversion of teleseismic receiver functions and magnetotelluric data using a genetic algorithm: Are seismic velocities and electrical conductivities compatible?. Geophysical Research Letters, 2007, 34,	4.0	54
5	Integrating Electromagnetic Data with Other Geophysical Observations for Enhanced Imaging of the Earth: A Tutorial and Review. Surveys in Geophysics, 2017, 38, 935-962.	4.6	51
6	Verification of velocityâ€resistivity relationships derived from structural joint inversion with borehole data. Geophysical Research Letters, 2013, 40, 3596-3601.	4.0	47
7	An adaptive coupling strategy for joint inversions that use petrophysical information as constraints. Journal of Applied Geophysics, 2017, 136, 279-297.	2.1	47
8	3D modelling of electrical anisotropy from electromagnetic array data: hypothesis testing for different upper mantle conduction mechanisms. Physics of the Earth and Planetary Interiors, 2005, 149, 225-242.	1.9	46
9	Massively parallel forward modeling of scalar and tensor gravimetry data. Computers and Geosciences, 2010, 36, 680-686.	4.2	45
10	Joint inversion of long-period magnetotelluric data and surface-wave dispersion curves for anisotropic structure: Application to data from Central Germany. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	38
11	Vertically Extensive Magma Reservoir Revealed From Joint Inversion and Quantitative Interpretation of Seismic and Gravity Data. Journal of Geophysical Research: Solid Earth, 2019, 124, 11170-11191.	3.4	38
12	Implications for the lithospheric geometry of the Iapetus suture beneath Ireland based on electrical resistivity models from deep-probing magnetotellurics. Geophysical Journal International, 2014, 198, 737-759.	2.4	28
13	Using empirical mode decomposition to process marine magnetotelluric data. Geophysical Journal International, 2012, 190, 293-309.	2.4	26
14	Geophysical evidence for crustal and mantle weak zones controlling intra-plate seismicity – the 2017 Botswana earthquake sequence. Earth and Planetary Science Letters, 2019, 506, 175-183.	4.4	26
15	The geometry of the lapetus Suture Zone in central Ireland deduced from a magnetotelluric study. Physics of the Earth and Planetary Interiors, 2007, 161, 134-141.	1.9	23
16	Comment on â€~The magnetotelluric phase tensor' by T. Grant Caldwell, Hugh M. Bibby and Colin Brown. Geophysical Journal International, 2007, 171, 565-566.	2.4	23
17	GPU parallelization of a three dimensional marine CSEM code. Computers and Geosciences, 2013, 58, 91-99.	4.2	19
18	Reactivation of Fault Systems by Compartmentalized Hydrothermal Fluids in the Southern Andes Revealed by Magnetotelluric and Seismic Data. Tectonics, 2020, 39, e2019TC005997.	2.8	18

Max Moorkamp

#	Article	IF	CITATIONS
19	3-D cross-gradient joint inversion of seismic refraction and DC resistivity data. Journal of Applied Geophysics, 2017, 141, 54-67.	2.1	14
20	Adaptive coupling strategy for simultaneous joint inversions that use petrophysical information as constraints. , 2010, , .		13
21	Crustal properties of the northern Scandinavian mountains and Fennoscandian shield from analysis of teleseismic receiver functions. Geophysical Journal International, 2018, 214, 386-401.	2.4	11
22	Inverting magnetotelluric data with distortion correction—stability, uniqueness and trade-off with model structure. Geophysical Journal International, 2020, 222, 1620-1638.	2.4	11
23	Probing the Southern African Lithosphere With Magnetotellurics: 2. Linking Electrical Conductivity, Composition, and Tectonomagmatic Evolution. Journal of Geophysical Research: Solid Earth, 2022, 127,	3.4	10
24	Joint-inversion of magnetotelluric, gravity and seismic data to image sub-basalt sediments offshore the Faroe-Islands. , 2014, , .		9
25	Joint stochastic constraint of a large data set from a salt dome. Geophysics, 2016, 81, ID1-ID24.	2.6	8
26	Structureâ€Coupled 3â€D Imaging of Magnetotelluric and Wideâ€Angle Seismic Reflection/Refraction Data With Interfaces. Journal of Geophysical Research: Solid Earth, 2019, 124, 10309-10330.	3.4	8
27	Deciphering the State of the Lower Crust and Upper Mantle With Multiâ€Physics Inversion. Geophysical Research Letters, 2022, 49, .	4.0	7
28	Crustal constraint through complete model space screening for diverse geophysical datasets facilitated by emulation. Tectonophysics, 2012, 572-573, 47-63.	2.2	6
29	Joint inversion of gravity and magnetotelluric data from the Ernest-Henry IOCG deposit with a variation of information constraint. , 2021, , .		6
30	Comparison of Different Coupling Methods for Joint Inversion of Geophysical Data: A Case Study for the Namibian Continental Margin. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022092.	3.4	5
31	Probing the Southern African Lithosphere With Magnetotellurics—Part I: Model Construction. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	3
32	Emulation: A Bayesian tool for joint inversion. , 2010, , .		2
33	A framework for 3D joint inversion of MT, gravity and seismic refraction data. , 2010, , .		2
34	2-D and 3-D Joint Inversion of Seismic, MT and Gravity Data from the Faroe-Shetland Basin. , 2014, , .		1
35	Using non-diagonal data covariances in geophysical inversion. Geophysical Journal International, 2020, 222, 1023-1033.	2.4	0
36	3D inversion of natural-source electromagnetic data from distributed-acquisition systems. , 2018, , .		0

#	Article	IF	CITATIONS
37	Geomagnetism, Paleomagnetism and Electromagnetism Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science. Earth and Space Science, 2022, 9, .	2.6	0