Yanchen Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6165966/publications.pdf

Version: 2024-02-01

759055 752573 24 389 12 20 citations h-index g-index papers 24 24 24 539 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	The association of mitochondrial aldehyde dehydrogenase gene (ALDH2) polymorphism with susceptibility to late-onset Alzheimer's disease in Chinese. Journal of the Neurological Sciences, 2008, 268, 172-175.	0.3	81
2	Elevated plasma interleukin-17A in a subgroup of Myasthenia Gravis patients. Cytokine, 2016, 78, 44-46.	1.4	40
3	Genetic analysis of tumor necrosis factor- \hat{l} ± (TNF- \hat{l} ±) G-308A and Saitohin Q7R polymorphisms with Alzheimer's disease. Journal of the Neurological Sciences, 2008, 270, 148-151.	0.3	28
4	Association between HLA-DRB1 and myasthenia gravis in a northern Han Chinese population. Journal of Clinical Neuroscience, 2011, 18, 1524-1527.	0.8	28
5	Ablation of IL-17 expression moderates experimental autoimmune myasthenia gravis disease severity. Cytokine, 2017, 96, 279-285.	1.4	22
6	The association of HLA-DQA1*0401 and DQB1*0604 with thymomatous myasthenia gravis in northern Chinese patients. Journal of the Neurological Sciences, 2012, 312, 57-61.	0.3	21
7	CTLA4 Variants and Haplotype Contribute Genetic Susceptibility to Myasthenia Gravis in Northern Chinese Population. PLoS ONE, 2014, 9, e101986.	1.1	20
8	Gene Polymorphisms for Both Auto-antigen and Immune-Modulating Proteins Are Associated with the Susceptibility of Autoimmune Myasthenia Gravis. Molecular Neurobiology, 2017, 54, 4771-4780.	1.9	16
9	The Role of Osteopontin and Its Gene on Glucocorticoid Response in Myasthenia Gravis. Frontiers in Neurology, 2017, 8, 230.	1.1	16
10	Lack of an Association between Alzheimer’s Disease and the Cystatin C <i>(CST3)</i> Gene G73A Polymorphism in Mainland Chinese. Dementia and Geriatric Cognitive Disorders, 2008, 25, 461-464.	0.7	14
11	Association analysis of NAD(P)H:quinone oxidoreductase gene 609 C/T polymorphism with Alzheimer's disease. Neuroscience Letters, 2006, 409, 179-181.	1.0	13
12	Association Between Alzheimer's Disease and the NOS3 gene Glu298Asp Polymorphism in Chinese. Journal of Molecular Neuroscience, 2008, 34, 173-176.	1.1	13
13	Trinucleotide expansions in the SCA7 gene in a large family with spinocerebellar ataxia and craniocervical dystonia. Neuroscience Letters, 2008, 434, 230-233.	1.0	13
14	Transient, recurrent, white matter lesions in x-linked Charcot-Marie-tooth disease with novel mutation of gap junction protein beta 1 gene in China: a case report. BMC Neurology, 2014, 14, 156.	0.8	13
15	Association study between IL-17A and IL-17F gene polymorphism and myasthenia gravis in Chinese patients. Neurological Sciences, 2016, 37, 123-130.	0.9	10
16	Myasthenia gravis: subgroup classifications. Lancet Neurology, The, 2016, 15, 355-356.	4.9	8
17	Rs3761389 polymorphism in autoimmune regulator (AIRE) gene is associated with susceptibility of myasthenia gravis in Chinese patients. Journal of Clinical Neuroscience, 2017, 40, 180-184.	0.8	7
18	The Electrophysiological Features in X-Linked Charcot-Marie-Tooth Disease With Transient Central Nervous System Deficits. Frontiers in Neurology, 2018, 9, 461.	1.1	7

#	Article	lF	CITATIONS
19	IL-4Rα Polymorphism Is Associated With Myasthenia Gravis in Chinese Han Population. Frontiers in Neurology, 2018, 9, 529.	1.1	6
20	Correlations of TNF- \hat{l}_{\pm} gene promoter polymorphisms with the risk of thymoma-associated myasthenia gravis in a northern Chinese Han population. Cancer Gene Therapy, 2017, 24, 259-266.	2.2	4
21	TNFAIP3 gene rs7749323 polymorphism is associated with late onset myasthenia gravis. Medicine (United) Tj ET	Qq1_1 0.1	784314 rgBT
22	Complement C3 polymorphism is associated with the susceptibility of myasthenia gravis in Chinese adult patients. Journal of Neuroimmunology, 2021, 353, 577487.	1.1	3
23	Precision medicine in myasthenia graves: begin from the data precision. Annals of Translational Medicine, 2016, 4, 106-106.	0.7	3
24	Letter re: International consensus guidance for management of myasthenia gravis: Executive summary. Neurology, 2017, 88, 505-505.	1.5	0