Peng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6165239/publications.pdf

Version: 2024-02-01

304701 377849 34 1,885 22 34 h-index citations g-index papers 43 43 43 2353 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resources, Conservation and Recycling, 2020, 158, 104814.	10.8	532
2	Persistent Heavy Winter Nitrate Pollution Driven by Increased Photochemical Oxidants in Northern China. Environmental Science & Environmental Science	10.0	180
3	Modeling biogenic and anthropogenic secondary organic aerosol in China. Atmospheric Chemistry and Physics, 2017, 17, 77-92.	4.9	137
4	Source apportionment of fine particulate matter in China in 2013 using a source-oriented chemical transport model. Science of the Total Environment, 2017, 601-602, 1476-1487.	8.0	86
5	Ozone pollution over China and India: seasonality and sources. Atmospheric Chemistry and Physics, 2020, 20, 4399-4414.	4.9	79
6	Attribution of Tropospheric Ozone to NO _{<i>x</i>} and VOC Emissions: Considering Ozone Formation in the Transition Regime. Environmental Science & Environmental Scie	10.0	77
7	Heavy-duty diesel vehicles dominate vehicle emissions in a tunnel study in northern China. Science of the Total Environment, 2018, 637-638, 431-442.	8.0	66
8	Source apportionment of summertime ozone in China using a source-oriented chemical transport model. Atmospheric Environment, 2019, 211, 79-90.	4.1	60
9	Source apportionment of secondary organic aerosol in China using a regional source-oriented chemical transport model and two emission inventories. Environmental Pollution, 2018, 237, 756-766.	7.5	57
10	Past and future trends of vehicle emissions in Tianjin, China, from 2000 to 2030. Atmospheric Environment, 2019, 209, 182-191.	4.1	49
11	Responses of decline in air pollution and recovery associated with COVID-19 lockdown in the Pearl River Delta. Science of the Total Environment, 2021, 756, 143868.	8.0	49
12	Vehicle emissions in a middle-sized city of China: Current status and future trends. Environment International, 2020, 137, 105514.	10.0	46
13	Aerosol Ammonium in the Urban Boundary Layer in Beijing: Insights from Nitrogen Isotope Ratios and Simulations in Summer 2015. Environmental Science and Technology Letters, 2019, 6, 389-395.	8.7	38
14	Regional source apportionment of summertime ozone and its precursors in the megacities of Beijing and Shanghai using a source-oriented chemical transport model. Atmospheric Environment, 2020, 224, 117337.	4.1	36
15	Estimating population exposure to ambient polycyclic aromatic hydrocarbon in the United States – Part II: Source apportionment and cancer risk assessment. Environment International, 2016, 97, 163-170.	10.0	34
16	Comprehensive Insights Into O ₃ Changes During the COVIDâ€19 From O ₃ Formation Regime and Atmospheric Oxidation Capacity. Geophysical Research Letters, 2021, 48, e2021GL093668.	4.0	32
17	Improved MEGAN predictions of biogenic isoprene in the contiguous United States. Atmospheric Environment, 2017, 148, 337-351.	4.1	29
18	Significant impact of heterogeneous reactions of reactive chlorine species on summertime atmospheric ozone and free-radical formation in north China. Science of the Total Environment, 2019, 693, 133580.	8.0	29

#	Article	IF	CITATIONS
19	Impact of reduced anthropogenic emissions during COVID-19 on air quality in India. Atmospheric Chemistry and Physics, 2021, 21, 4025-4037.	4.9	28
20	Insights into source origins and formation mechanisms of nitrate during winter haze episodes in the Yangtze River Delta. Science of the Total Environment, 2020, 741, 140187.	8.0	23
21	Modeled changes in source contributions of particulate matter during the COVID-19 pandemic in the Yangtze River Delta, China. Atmospheric Chemistry and Physics, 2021, 21, 7343-7355.	4.9	23
22	Estimating population exposure to ambient polycyclic aromatic hydrocarbon in the United States – Part I: Model development and evaluation. Environment International, 2017, 99, 263-274.	10.0	22
23	Source apportionment and regional transport of anthropogenic secondary organic aerosol during winter pollution periods in the Yangtze River Delta, China. Science of the Total Environment, 2020, 710, 135620.	8.0	22
24	The impact of COVID-19 lockdown on atmospheric CO2 in Xi'an, China. Environmental Research, 2021, 197, 111208.	7. 5	22
25	The impact of sea-salt chloride on ozone through heterogeneous reaction with N2O5 in a coastal region of south China. Atmospheric Environment, 2020, 236, 117604.	4.1	20
26	Spatial-temporal variations and source contributions to forest ozone exposure in China. Science of the Total Environment, 2019, 674, 189-199.	8.0	17
27	Heterogeneous Uptake of N2O5 in Sand Dust and Urban Aerosols Observed during the Dry Season in Beijing. Atmosphere, 2019, 10, 204.	2.3	16
28	Coordinated health effects attributable to particulate matter and other pollutants exposures in the North China Plain. Environmental Research, 2022, 208, 112671.	7.5	13
29	Is atmospheric oxidation capacity better in indicating tropospheric O3 formation?. Frontiers of Environmental Science and Engineering, 2022, 16, .	6.0	12
30	Control of NOx emissions by air staging in small- and medium-scale biomass pellet boilers. Environmental Science and Pollution Research, 2019, 26, 9717-9729.	5.3	11
31	Unexpected enhancement of ozone exposure and health risks during National Day in China. Atmospheric Chemistry and Physics, 2021, 21, 10347-10356.	4.9	11
32	Isoprene Emissions Response to Drought and the Impacts on Ozone and SOA in China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033263.	3.3	10
33	The aggravated short-term PM2.5-related health risk due to atmospheric transport in the Yangtze River Delta. Environmental Pollution, 2021, 275, 116672.	7. 5	8
34	Contribution of biogenic sources to secondary organic aerosol in the summertime in Shaanxi, China. Chemosphere, 2020, 254, 126815.	8.2	4