Eric Ruelland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6165217/publications.pdf

Version: 2024-02-01

		201674	168389
54	3,192	27	53
papers	citations	h-index	g-index
58	58	58	3519
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Controlled natural selection of soil microbiome through plant-soil feedback confers resistance to a foliar pathogen. Plant and Soil, 2023, 485, 181-195.	3.7	4
2	A m $\tilde{\text{A}}$ @nage $\tilde{\text{A}}$ trois: salicylic acid, growth inhibition, and immunity. Trends in Plant Science, 2022, 27, 460-471.	8.8	24
3	Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations. International Journal of Molecular Sciences, 2022, 23, 3227.	4.1	17
4	An Arabidopsis mutant deficient in phosphatidylinositol-4-phosphate kinases ß1 and ß2 displays altered auxin-related responses in roots. Scientific Reports, 2022, 12, 6947.	3.3	4
5	BODIPY Conjugate of Epibrassinolide as a Novel Biologically Active Probe for In Vivo Imaging. International Journal of Molecular Sciences, 2021, 22, 3599.	4.1	O
6	Identification of salicylic acid-independent responses in an Arabidopsis phosphatidylinositol 4-kinase beta double mutant. Annals of Botany, 2020, 125, 775-784.	2.9	15
7	Deciphering the Binding of Salicylic Acid to Arabidopsis thaliana Chloroplastic GAPDH-A1. International Journal of Molecular Sciences, 2020, 21, 4678.	4.1	9
8	Use of Molecular Dynamics to Decipher the Binding of Salicylic Acid to Proteins. Example of Arabidopsis Thaliana Chloroplastic GAPDH-A1. Biology and Life Sciences Forum, 2020, 4, .	0.6	0
9	Interplay between phosphoinositides and actin cytoskeleton in the regulation of immunity related responses in Arabidopsis thaliana seedlings. Environmental and Experimental Botany, 2019, 167, 103867.	4.2	7
10	Salicylic Acid Binding Proteins (SABPs): The Hidden Forefront of Salicylic Acid Signalling. International Journal of Molecular Sciences, 2019, 20, 4377.	4.1	65
11	The SCOOP12 peptide regulates defense response and root elongation in <i>Arabidopsis thaliana</i> Journal of Experimental Botany, 2019, 70, 1349-1365.	4.8	59
12	Glycerolipid analysis during desiccation and recovery of the resurrection plant <scp><i>Xerophyta humilis</i></scp> (Bak) Dur and Schinz. Plant, Cell and Environment, 2018, 41, 533-547.	5.7	21
13	The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Progress in Lipid Research, 2018, 71, 43-53.	11.6	78
14	Diacylglycerol kinases activate tobacco NADPH oxidaseâ€dependent oxidative burst in response to cryptogein. Plant, Cell and Environment, 2017, 40, 585-598.	5.7	29
15	Editorial: Lipid Signaling in Plant Development and Responses to Environmental Stresses. Frontiers in Plant Science, 2016, 7, 324.	3.6	7
16	The inhibition of basal phosphoinositide-dependent phospholipase C activity in Arabidopsis suspension cells by abscisic or salicylic acid acts as a signalling hub accounting for an important overlap in transcriptome remodelling induced by these hormones. Environmental and Experimental Botany, 2016, 123, 37-49.	4.2	18
17	Molecular mechanisms of gravity perception and signal transduction in plants. Protoplasma, 2016, 253, 987-1004.	2.1	28
18	Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress. Frontiers in Plant Science, 2015, 6, 928.	3.6	33

#	Article	IF	CITATIONS
19	Importance of phosphoinositide-dependent signaling pathways in the control of gene expression in resting cells and in response to phytohormones. Plant Signaling and Behavior, 2015, 10, e1019983.	2.4	3
20	Magical mystery tour: Salicylic acid signalling. Environmental and Experimental Botany, 2015, 114, 117-128.	4.2	125
21	The Arabidopsis $\langle i \rangle$ pi4kIIIÎ 2 1Î 2 2 $\langle i \rangle$ double mutant is salicylic acid-overaccumulating: a new example of salicylic acid influence on plant stature. Plant Signaling and Behavior, 2014, 9, e977210.	2.4	9
22	Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome. Frontiers in Plant Science, 2014, 5, 608.	3.6	16
23	Plant phosphoinositide-dependent phospholipases C: Variations around a canonical theme. Biochimie, 2014, 96, 144-157.	2.6	111
24	Constitutive salicylic acid accumulation in $\langle i \rangle pi4k \langle scp \rangle lll \langle scp \rangle \hat{l}^2 1 \hat{l}^2 2 \langle i \rangle$ Arabidopsis plants stunts rosette but not root growth. New Phytologist, 2014, 203, 805-816.	7.3	51
25	The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Progress in Lipid Research, 2013, 52, 62-79.	11.6	102
26	Signal transduction pathways involving phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: Convergences and divergences among eukaryotic kingdoms. Progress in Lipid Research, 2013, 52, 1-14.	11.6	77
27	Phosphoglycerolipids are master players in plant hormone signal transduction. Plant Cell Reports, 2013, 32, 839-851.	5.6	74
28	The intrinsically disordered C-terminal region of Arabidopsis thaliana TCP8 transcription factor acts both as a transactivation and self-assembly domain. Molecular BioSystems, 2013, 9, 2282.	2.9	41
29	The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide-dependent phospholipase C coupled to diacylglycerol kinase. Frontiers in Plant Science, 2013, 4, 307.	3.6	31
30	Multiple reaction monitoring mass spectrometry is a powerful tool to study glycerolipid composition in plants with different level of desaturase activity. Plant Signaling and Behavior, 2013, 8, e24118.	2.4	6
31	Eat in or take away? How phosphatidylinositol 4-kinases feed the phospholipase C pathway with substrate. Plant Signaling and Behavior, 2012, 7, 1197-1199.	2.4	6
32	Arabidopsis Type-III Phosphatidylinositol 4-Kinases \hat{l}^21 and \hat{l}^22 are Upstream of the Phospholipase C Pathway Triggered by Cold Exposure. Plant and Cell Physiology, 2012, 53, 565-576.	3.1	74
33	Acyl Chains of Phospholipase D Transphosphatidylation Products in Arabidopsis Cells: A Study Using Multiple Reaction Monitoring Mass Spectrometry. PLoS ONE, 2012, 7, e41985.	2.5	40
34	How plants sense temperature. Environmental and Experimental Botany, 2010, 69, 225-232.	4.2	400
35	Assessment of mitochondria as a compartment for phosphatidylinositol synthesis in Solanum tuberosum. Plant Physiology and Biochemistry, 2010, 48, 952-960.	5.8	7
36	Phospholipase D Activation Is an Early Component of the Salicylic Acid Signaling Pathway in Arabidopsis Cell Suspensions Â. Plant Physiology, 2009, 150, 424-436.	4.8	67

#	Article	IF	Citations
37	Chapter 2 Cold Signalling and Cold Acclimation in Plants. Advances in Botanical Research, 2009, 49, 35-150.	1.1	445
38	The hydrophobic segment of <i>Arabidopsis thaliana</i> cluster I diacylglycerol kinases is sufficient to target the proteins to cell membranes. FEBS Letters, 2008, 582, 1743-1748.	2.8	21
39	Phosphatidylinositol 4-Kinase Activation Is an Early Response to Salicylic Acid in Arabidopsis Suspension Cells. Plant Physiology, 2007, 144, 1347-1359.	4.8	110
40	Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsiscells. FEBS Letters, 2006, 580, 4218-4223.	2.8	98
41	The Cold-Induced Early Activation of Phospholipase C and D Pathways Determines the Response of Two Distinct Clusters of Genes in Arabidopsis Cell Suspensions. Plant Physiology, 2005, 139, 1217-1233.	4.8	152
42	Cellular and subcellular localization of the lignin biosynthetic enzymes caffeic acid-O -methyltransferase, cinnamyl alcohol dehydrogenase and cinnamoyl-coenzyme A reductase in two monocots, sugarcane and maize. Physiologia Plantarum, 2003, 117, 93-99.	5.2	27
43	Activation of Phospholipases C and D Is an Early Response to a Cold Exposure in Arabidopsis Suspension Cells. Plant Physiology, 2002, 130, 999-1007.	4.8	222
44	The Role of Active Site Arginines of Sorghum NADP-Malate Dehydrogenase in Thioredoxin-dependent Activation and Activity. Journal of Biological Chemistry, 2000, 275, 35792-35798.	3.4	13
45	The dimer contact area of sorghum NADP-malate dehydrogenase: role of aspartate 101 in dimer stability and catalytic activity. FEBS Letters, 2000, 471, 240-244.	2.8	5
46	Oxidationâ^'Reduction Properties of the Regulatory Disulfides of Sorghum Chloroplast Nicotinamide Adenine Dinucleotide Phosphateâ^'Malate Dehydrogenaseâ€. Biochemistry, 2000, 39, 3344-3350.	2.5	56
47	Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition?. Trends in Plant Science, 1999, 4, 136-141.	8.8	156
48	The internal Cys-207 of sorghum leaf NADP-malate dehydrogenase can form mixed disulphides with thioredoxin. FEBS Letters, 1999, 444, 165-169.	2.8	41
49	The single mutation Trp35Ala in the 35-40 redox site of Chlamydomonas reinhardtii thioredoxin h affects its biochemical activity and the pH dependence of C36-C39 1H-13C NMR. FEBS Journal, 1998, 255, 185-195.	0.2	59
50	Molecular basis of plant adaptation to light. Example of two enzymes of the C4 photosynthesis cycle. Comptes Rendus De L'Acad©mie Des Sciences Série 3, Sciences De La Vie, 1998, 321, 577-583.	0.8	0
51	The Autoinhibition of Sorghum NADP Malate Dehydrogenase Is Mediated by a C-terminal Negative Charge. Journal of Biological Chemistry, 1998, 273, 33482-33488.	3.4	28
52	An Internal Cysteine Is Involved in the Thioredoxin-dependent Activation of Sorghum Leaf NADP-malate Dehydrogenase. Journal of Biological Chemistry, 1997, 272, 19851-19857.	3.4	45
53	Light-dependent Activation of NADP-Malate Dehydrogenase: a Complex Process. Functional Plant Biology, 1997, 24, 529.	2.1	33
54	An active-site cysteine of sorghum leaf NADP-malate dehydrogenase studied by site-directed mutagenesis. FEBS Letters, 1996, 382, 137-140.	2.8	12