
Vladimir S Levitskii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6165022/publications.pdf Version: 2024-02-01

4

#	Article	IF	CITATIONS
1	Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual particles. Carbon, 2017, 122, 737-745.	5.4	72
2	Raman Spectroscopy of Lattice-Matched Graphene on Strongly Interacting Metal Surfaces. ACS Nano, 2017, 11, 6336-6345.	7.3	52
3	Raman spectroscopy of copper oxide films deposited by reactive magnetron sputtering. Technical Physics Letters, 2015, 41, 1094-1096.	0.2	32
4	Composition and structure of copper oxide films synthesized by reactive magnetron sputtering with a hot target. Glass Physics and Chemistry, 2016, 42, 359-362.	0.2	21
5	Supersensitive graphene-based gas sensor. Technical Physics, 2016, 61, 453-457.	0.2	17
6	Investigation of the structure, elemental and phase compositions of Fe3O4-SiO2 composite layers by scanning electron microscopy, X-ray spectroscopy, and thermal nitrogen desorption methods. Physics of the Solid State, 2014, 56, 2155-2159.	0.2	12
7	Investigation of the structure and composition of film sol-gel-derived CoO x -SiO2 systems. Physics of the Solid State, 2014, 56, 270-275.	0.2	8
8	Structure and composition of silicon microarrays subjected to cyclic insertion and extraction of lithium. Technical Physics, 2015, 60, 531-540.	0.2	8
9	Spectroscopic properties of γ-irradiated Fe m O n –SiO2 composite nanoparticles. Physics of the Solid State, 2016, 58, 919-923.	0.2	8
10	Effect of self-organization, defects, impurities, and autocatalytic processes on the parameters of ZnO films and nanorods. Semiconductors, 2015, 49, 1473-1482.	0.2	7
11	Intensity of visible and IR emission of intracenter 4f transitions of RE ions in Er- and Tm-doped ZnO films with additional Ag, Li, and N impurities. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 I	1 02 8431	4 7 gBT /Ovei
12	Application of silicon zig-zag wall arrays for anodes of Li-ion batteries. Semiconductor Science and Technology, 2016, 31, 014008.	1.0	7
13	Complex XPS and Raman Study of Graphene on Copper and Si/SiO ₂ Subjected to Ar Ion Treatment. Key Engineering Materials, 0, 721, 258-262.	0.4	6
14	Influence of constant magnetic field on aggregation processes in magnetite colloids. Journal of Physics: Conference Series, 2014, 572, 012027.	0.3	5
15	Study of catalytic properties of sol-gel-derived CoO x -SiO2 film systems by the example of the growth of carbon nanomaterials. Physics of the Solid State, 2014, 56, 1408-1411.	0.2	4
16	Study of the processes of degradation of the optical properties of mesoporous and macroporous silicon upon exposure to simulated solar radiation. Semiconductors, 2015, 49, 1493-1498.	0.2	4
17	Thin film GaP for solar cell application. Journal of Physics: Conference Series, 2016, 741, 012088.	0.3	4

18 The study of the phase composition of polymorphous silicon film by Raman spectroscopy. , 2016, , .

VLADIMIR S LEVITSKII

#	Article	IF	CITATIONS
19	The study of metal sulphide nanomaterials obtained by chemical bath deposition and hot-injection technique. Journal of Physics: Conference Series, 2015, 643, 012117.	0.3	3
20	UV and IR emission intensity in ZnO films, nanorods, and bulk single crystals doped with Er and additionally introduced impurities. Semiconductors, 2016, 50, 1304-1311.	0.2	3
21	Parameters of ZnO films with p-type conductivity deposited by high-frequency magnetron sputtering. Semiconductors, 2017, 51, 559-564.	0.2	3
22	Influence of substrate movement on the ITO film thickness distribution during magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 061301.	0.9	3
23	The photoluminescence and phase composition of lead sulphide–cadmium sulphide layers obtained by chemical bath deposition. Journal of Physics: Conference Series, 2016, 735, 012056.	0.3	2
24	Optical and structural properties of ZnO thin films after laser treatment. Ferroelectrics, 2016, 496, 163-169.	0.3	2
25	Estimation the uniformity of a polygraphene coating on copper (GCC). , 2016, , .		0
26	THE PHOTOLUMINESCENCE STUDIES OF POROUS SILICON OBTAINED BY PHOTOELECTROCHEMICAL ETCHING. Alternative Energy and Ecology (ISJAEE), 2016, , 126-132.	0.2	0