Jin-Song Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6164853/publications.pdf

Version: 2024-02-01

687363 713466 22 543 13 21 h-index citations g-index papers 22 22 22 540 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Heterologous expression, fermentation strategies and molecular modification of collagen for versatile applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 5268-5289.	10.3	8
2	A combination of bioinformatics analysis and rational design strategies to enhance keratinase thermostability for efficient biodegradation of feathers. Science of the Total Environment, 2022, 818, 151824.	8.0	15
3	Preparation and applications of keratin biomaterials from natural keratin wastes. Applied Microbiology and Biotechnology, 2022, 106, 2349-2366.	3.6	14
4	Phospholipids (PLs) know-how: exploring and exploiting phospholipase D for its industrial dissemination. Critical Reviews in Biotechnology, 2021, 41, 1257-1278.	9.0	7
5	Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology. Carbohydrate Polymers, 2021, 264, 118015.	10.2	28
6	Improving the Intensity of Integrated Expression for Microbial Production. ACS Synthetic Biology, 2021, 10, 2796-2807.	3.8	8
7	Enzymatic Extraction of Bioactive and Selfâ€Assembling Wool Keratin for Biomedical Applications. Macromolecular Bioscience, 2020, 20, e2000073.	4.1	27
8	Improving the biocatalytic performance of co-immobilized cells harboring nitrilase via addition of silica and calcium carbonate. Bioprocess and Biosystems Engineering, 2020, 43, 2201-2207.	3.4	6
9	The tale of a versatile enzyme: Molecular insights into keratinase for its industrial dissemination. Biotechnology Advances, 2020, 45, 107655.	11.7	29
10	Fabrication and characterization of high molecular keratin based nanofibrous membranes for wound healing. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111158.	5.0	37
11	Recombinant expression and molecular engineering of the keratinase from Brevibacillus parabrevis for dehairing performance. Journal of Biotechnology, 2020, 320, 57-65.	3.8	14
12	Two-Stage Semi-Continuous 2-Keto-Gluconic Acid (2KGA) Production by Pseudomonas plecoglossicida JUIM01 From Rice Starch Hydrolyzate. Frontiers in Bioengineering and Biotechnology, 2020, 8, 120.	4.1	11
13	Efficient keratinase expression via promoter engineering strategies for degradation of feather wastes. Enzyme and Microbial Technology, 2020, 137, 109550.	3.2	35
14	Combining Pro-peptide Engineering and Multisite Saturation Mutagenesis To Improve the Catalytic Potential of Keratinase. ACS Synthetic Biology, 2019, 8, 425-433.	3.8	32
15	Phospholipase D engineering for improving the biocatalytic synthesis of phosphatidylserine. Bioprocess and Biosystems Engineering, 2019, 42, 1185-1194.	3.4	17
16	A Membrane-Bound Gluconate Dehydrogenase from 2-Keto-d-Gluconic Acid Industrial Producing Strain Pseudomonas plecoglossicida JUIM01: Purification, Characterization, and Gene Identification. Applied Biochemistry and Biotechnology, 2019, 188, 897-913.	2.9	10
17	Efficient biocatalytic synthesis of nicotinic acid by recombinant nitrilase via high density culture. Bioresource Technology, 2018, 260, 427-431.	9.6	21
18	Purification, characterization and gene identification of a membrane-bound glucose dehydrogenase from 2-keto-d-gluconic acid industrial producing strain Pseudomonas plecoglossicida JUIM01. International Journal of Biological Macromolecules, 2018, 118, 534-541.	7.5	12

#	Article	IF	CITATION
19	Comparative Transcriptomic and Proteomic Analyses Reveal a FluGâ€Mediated Signaling Pathway Relating to Asexual Sporulation of <i>Antrodia camphorata</i>). Proteomics, 2017, 17, 1700256.	2.2	20
20	Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microbial Cell Factories, 2012, 11, 142.	4.0	172
21	Isolation, Identification, and Culture Optimization of a Novel Glycinonitrile-Hydrolyzing Fungus—Fusarium oxysporum H3. Applied Biochemistry and Biotechnology, 2011, 165, 963-977.	2.9	19
22	Characterization, heterologous expression and engineering of trehalase for biotechnological applications. Systems Microbiology and Biomanufacturing, 0 , 1 .	2.9	1