Delia Miguel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6164685/publications.pdf

Version: 2024-02-01

236925 243625 2,095 60 25 44 citations h-index g-index papers 60 60 60 2101 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	BrÃ, nsted Acid-Catalyzed Nucleophilic Substitution of Alcohols. Advanced Synthesis and Catalysis, 2006, 348, 1841-1845.	4.3	205
2	Br \tilde{A} , nsted Acid Catalyzed Propargylation of 1,3-Dicarbonyl Derivatives. Synthesis of Tetrasubstituted Furans. Organic Letters, 2007, 9, 727-730.	4.6	175
3	Bioinspired terpene synthesis: a radical approach. Chemical Society Reviews, 2011, 40, 3525.	38.1	117
4	Brønsted Acid-Catalyzed Benzylation of 1,3-Dicarbonyl Derivatives. Organic Letters, 2007, 9, 2027-2030.	4.6	105
5	Recent applications of Cp ₂ TiCl in natural product synthesis. Organic Chemistry Frontiers, 2014, 1, 15-33.	4.5	103
6	Stapled helical o-OPE foldamers as new circularly polarized luminescence emitters based on carbophilic interactions with Ag(<scp>i</scp>)-sensitivity. Chemical Science, 2016, 7, 5663-5670.	7.4	84
7	Pyrene-Containing <i>ortho</i> -Oligo(phenylene)ethynylene Foldamer as a Ratiometric Probe Based on Circularly Polarized Luminescence. Journal of Organic Chemistry, 2018, 83, 4455-4463.	3.2	75
8	Octagonâ€Embedded Carbohelicene as a Chiral Motif for Circularly Polarized Luminescence Emission of Saddleâ€Helix Nanographenes. Angewandte Chemie - International Edition, 2021, 60, 6094-6100.	13.8	70
9	Toward Multiple Conductance Pathways with Heterocycle-Based Oligo(phenyleneethynylene) Derivatives. Journal of the American Chemical Society, 2015, 137, 13818-13826.	13.7	64
10	BrÃ, nsted Acid Catalyzed C3-Selective Propargylation and Benzylation of Indoles with Tertiary Alcohols. Synlett, 2008, 2008, 975-978.	1.8	60
11	Brønsted Acid Catalyzed Alkylation of Indoles with Tertiary Propargylic Alcohols: Scope and Limitations. European Journal of Organic Chemistry, 2010, 2010, 7027-7039.	2.4	59
12	Synthesis of Diverse Indoleâ€Containing Scaffolds by Gold(I)â€Catalyzed Tandem Reactions of 3â€Propargylindoles Initiated by 1,2â€Indole Migrations: Scope and Computational Studies. Chemistry - A European Journal, 2010, 16, 9818-9828.	3.3	59
13	OFF/ON switching of circularly polarized luminescence by oxophilic interaction of homochiral sulfoxide-containing <i>o</i> -OPEs with metal cations. Chemical Communications, 2018, 54, 13985-13988.	4.1	53
14	Water Control over the Chemoselectivity of a Ti/Ni Multimetallic System: Heck- or Reductive-Type Cyclization Reactions of Alkyl Iodides. Organic Letters, 2012, 14, 5984-5987.	4.6	51
15	Iron nanoparticles-based supramolecular hydrogels to originate anisotropic hybrid materials with enhanced mechanical strength. Materials Chemistry Frontiers, 2018, 2, 686-699.	5.9	46
16	Ti/Pd Bimetallic Systems for the Efficient Allylation of Carbonyl Compounds and Homocoupling Reactions. Chemistry - A European Journal, 2011, 17, 3985-3994.	3.3	45
17	Structural versus Electrical Functionalization of Oligo(phenylene ethynylene) Diamine Molecular Junctions. Journal of Physical Chemistry C, 2014, 118, 21655-21662.	3.1	42
18	The Role of Oligomeric Gold–Thiolate Units in Single-Molecule Junctions of Thiol-Anchored Molecules. Journal of Physical Chemistry C, 2018, 122, 3211-3218.	3.1	41

#	Article	IF	CITATIONS
19	Chiral double stapled <i>o</i> -OPEs with intense circularly polarized luminescence. Chemical Communications, 2019, 55, 10685-10688.	4.1	41
20	Sulfoxideâ€Induced Homochiral Folding of <i>ortho</i> â€Phenylene Ethynylenes (<i>o</i> â€OPEs) by Silver(I) Templating: Structure and Chiroptical Properties. Chemistry - A European Journal, 2018, 24, 2653-2662.	3.3	38
21	Reduction Reactions in Green Solvents: Water, Supercritical Carbon Dioxide, and Ionic Liquids. ChemSusChem, 2011, 4, 1035-1048.	6.8	37
22	Synthesis of 3-Allenylindoles and 3-Dienylindoles by Brønsted Acid Catalyzed Allenylation of 2-Arylindoles with Tertiary Propargylic Alcohols. Synlett, 2009, 2009, 1985-1989.	1.8	31
23	Ti(III)-Catalyzed Cyclizations of Ketoepoxypolyprenes: Control over the Number of Rings and Unexpected Stereoselectivities. Journal of the American Chemical Society, 2014, 136, 6943-6951.	13.7	30
24	New Synthesis of 2-Aryl-3-Substituted Benzo[b] furans from Benzyl 2-Halophenyl Ethers. Journal of Organic Chemistry, 2006, 71, 4024-4027.	3.2	29
25	Novel <i>ortho</i> -OPE metallofoldamers: binding-induced folding promoted by nucleating Ag(<scp>i</scp>)–alkyne interactions. Chemical Science, 2014, 5, 4582-4591.	7.4	29
26	Chiral Distorted Hexaâ€∢i>peri⟨li>â€hexabenzocoronenes Bearing a Nonagonâ€Embedded Carbohelicene. Angewandte Chemie - International Edition, 2021, 60, 22051-22056.	13.8	27
27	Synthesis of 1,5-Enynes by Brønsted Acid Catalyzed Substitution of Propargylic Alcohols and One-Pot Synthesis of Bicyclo[3.1.0]hexenes. Synthesis, 2007, 2007, 3252-3256.	2.3	25
28	Ti/Ni-Mediated Inter- and Intramolecular Conjugate Addition of Aryl and Alkenyl Halides and Triflates. Journal of Organic Chemistry, 2014, 79, 1529-1541.	3.2	25
29	New Dual Fluorescent Probe for Simultaneous Biothiol and Phosphate Bioimaging. Chemistry - A European Journal, 2015, 21, 14772-14779.	3.3	23
30	Octagonâ€Embedded Carbohelicene as a Chiral Motif for Circularly Polarized Luminescence Emission of Saddleâ€Helix Nanographenes. Angewandte Chemie, 2021, 133, 6159-6165.	2.0	21
31	Titanocene(III)-Promoted Barbier-type Crotylation of Carbonyl Compounds. Journal of Organic Chemistry, 2011, 76, 732-735.	3.2	19
32	Ti/Niâ∈Based Multimetallic System for the Efficient Allylation of Carbonyl Compounds. European Journal of Organic Chemistry, 2012, 2012, 1499-1503.	2.4	18
33	Solvent- and ligand-induced switch of selectivity in gold(I)-catalyzed tandem reactions of 3-propargylindoles. Beilstein Journal of Organic Chemistry, 2011, 7, 786-793.	2.2	17
34	Development of a New Dual Polarity and Viscosity Probe Based on the Foldamer Concept. Organic Letters, 2015, 17, 2844-2847.	4.6	17
35	Synthesis and Photophysics of a New Family of Fluorescent 9â€Alkylâ€Substituted Xanthenones. Chemistry - A European Journal, 2014, 20, 447-455.	3.3	16
36	Extended enantiopure <i>ortho</i> -phenylene ethylene (<i>o</i> -OPE)-based helical systems as scaffolds for supramolecular architectures: a study of chiroptical response and its connection to the CISS effect. Organic Chemistry Frontiers, 2021, 8, 5071-5086.	4.5	16

#	Article	IF	CITATIONS
37	Simple Perylene Diimide Cyclohexane Derivative With Combined CPL and TPA Properties. Frontiers in Chemistry, 2020, 8, 306.	3.6	15
38	Synthesis of 2-Indol-3-ylbenzofulvenes through a Tandem Reaction Catalyzed by Cationic Gold(I) Complexes. Synthesis, 2012, 44, 1874-1884.	2.3	14
39	Titanocene(III)â€Catalyzed 6â€ <i>exo</i> Versus 7â€ <i>endo</i> Cyclizations of Epoxypolyprenes: Efficient Control and Synthesis of Versatile Terpenic Building Blocks. Chemistry - A European Journal, 2013, 19, 14484-14495.	3.3	14
40	Photophysics of a Live-Cell-Marker, Red Silicon-Substituted Xanthene Dye. Journal of Physical Chemistry A, 2015, 119, 10854-10862.	2.5	13
41	Influence of the Number of Anchoring Groups on the Electronic and Mechanical Properties of Benzeneâ€, Anthracene―and Pentaceneâ€Based Molecular Devices. ChemPhysChem, 2012, 13, 860-868.	2.1	10
42	A solvatofluorochromic silicon-substituted xanthene dye useful in bioimaging. Dyes and Pigments, 2019, 168, 264-272.	3.7	10
43	New Thiol-Sensitive Dye Application for Measuring Oxidative Stress in Cell Cultures. Scientific Reports, 2019, 9, 1659.	3.3	10
44	Orthogonal cell polarity imaging by multiparametric fluorescence microscopy. Sensors and Actuators B: Chemical, 2020, 309, 127770.	7.8	10
45	Efficient acetate sensor in biological media based on a selective Excited State Proton Transfer (ESPT) reaction. Sensors and Actuators B: Chemical, 2017, 250, 623-628.	7.8	9
46	A Red-Emitting, Multidimensional Sensor for the Simultaneous Cellular Imaging of Biothiols and Phosphate Ions. Sensors, 2018, 18, 161.	3.8	9
47	Optically active Ag(<scp>i</scp>): <i>o</i> OPE helicates using a single homochiral sulfoxide as chiral inducer. Organic and Biomolecular Chemistry, 2019, 17, 8425-8434.	2.8	8
48	Coupled Excited-State Dynamics in N-Substituted 2-Methoxy-9-Acridones. Frontiers in Chemistry, 2019, 7, 129.	3.6	8
49	Photostability and Dynamic Helical Behavior in Chiral Poly(phenylacetylene)s with a Preferred Screwâ€6ense. Angewandte Chemie - International Edition, 0, , .	13.8	8
50	Exploring potentialities and limitations of stapled <i>o</i> â€oligo(phenyleneethynylene)s (<i>o</i> â€∢scp>OPEs) as efficient circularly polarized luminescence emitters. Chirality, 2018, 30, 43-54.	2.6	6
51	Three-state molecular potentiometer based on a non-symmetrically positioned in-backbone linker. Journal of Materials Chemistry C, 2021, 9, 16282-16289.	5.5	6
52	Two-dimensional carbon-based conductive materials with dynamically controlled asymmetric Dirac cones. Physical Chemistry Chemical Physics, 2015, 17, 31902-31910.	2.8	5
53	Detection by fluorescence microscopy of N-aminopeptidases in bacteria using an ICT sensor with multiphoton excitation: Usefulness for super-resolution microscopy. Sensors and Actuators B: Chemical, 2020, 321, 128487.	7.8	5
54	Chiral Distorted Hexaâ€ <i>peri</i> å€hexabenzocoronenes Bearing a Nonagonâ€Embedded Carbohelicene. Angewandte Chemie, 2021, 133, 22222-2227.	2.0	5

#	Article	IF	CITATION
55	Enantiopure Double <i>ortho</i> â€Oligophenylethynyleneâ€Based Helical Structures with Circularly Polarized Luminescence Activity. ChemPhotoChem, 2022, 6, .	3.0	5
56	Thermally Driven Nanofuses Based on Organometallic Rotors. ChemPhysChem, 2012, 13, 3857-3865.	2.1	4
57	Simple and non-charged long-lived fluorescent intracellular organelle trackers. Dyes and Pigments, 2020, 183, 108649.	3.7	4
58	Intramolecular Carbolithiation of Aromatic N-Allyl-N-(2-Lithioallyl)Amines:Reinvestigation of the Mechanism and Synthesis of Functionalized Pyrrolidines. Letters in Organic Chemistry, 2006, 3, 470-476.	0.5	2
59	Photostability and Dynamic Helical Behavior in Chiral Poly(phenylacetylene)s with a Preferred Screwâ€Sense. Angewandte Chemie, 2022, 134, .	2.0	2
60	Frontispiece: New Dual Fluorescent Probe for Simultaneous Biothiol and Phosphate Bioimaging. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0