Maarten van Zonneveld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6164270/publications.pdf Version: 2024-02-01

		471509	501196
29	1,129	17	28
papers	citations	h-index	g-index
32	32	32	1926
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fruit and vegetable biodiversity for nutritionally diverse diets: Challenges, opportunities, and knowledge gaps. Global Food Security, 2022, 33, 100618.	8.1	6
2	De novo SNP calling reveals the genetic differentiation and morphological divergence in genus <i>Amaranthus</i> . Plant Genome, 2022, 15, e20206.	2.8	7
3	Holocene land and seaâ€ŧrade routes explain complex patterns of preâ€Columbian crop dispersion. New Phytologist, 2021, 229, 1768-1781.	7.3	25
4	Diversity and conservation of traditional African vegetables: Priorities for action. Diversity and Distributions, 2021, 27, 216-232.	4.1	15
5	Growing Environment and Heat Treatment Effects on Intra- and Interspecific Pollination in Chile Pepper (Capsicum spp.). Agronomy, 2021, 11, 1275.	3.0	2
6	Modelled distributions and conservation status of the wild relatives of chile peppers (<i>Capsicum</i> L.). Diversity and Distributions, 2020, 26, 209-225.	4.1	41
7	Distributions, conservation status, and abiotic stress tolerance potential of wild cucurbits (<i>Cucurbita</i> L.). Plants People Planet, 2020, 2, 269-283.	3.3	26
8	Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives. Scientific Reports, 2020, 10, 2111.	3.3	37
9	Decision-Making to Diversify Farm Systems for Climate Change Adaptation. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	52
10	The future of coffee and cocoa agroforestry in a warmer Mesoamerica. Scientific Reports, 2019, 9, 8828.	3.3	65
11	Bridging molecular genetics and participatory research: how access and benefitâ€sharing stimulate interdisciplinary research for tropical biology and conservation. Biotropica, 2018, 50, 178-186.	1.6	7
12	Tree genetic resources at risk in South America: A spatial threat assessment to prioritize populations for conservation. Diversity and Distributions, 2018, 24, 718-729.	4.1	11
13	Human diets drive range expansion of megafauna-dispersed fruit species. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3326-3331.	7.1	37
14	A meta-analysis of molecular marker genetic datasets for eastern Africa trees supports the utility of potential natural vegetation maps for planning climate-smart restoration initiatives. Tree Genetics and Genomes, 2017, 13, 1.	1.6	1
15	Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nature Genetics, 2016, 48, 1024-1030.	21.4	259
16	An Integrated Hypothesis on the Domestication of Bactris gasipaes. PLoS ONE, 2015, 10, e0144644.	2.5	18
17	Screening Genetic Resources of Capsicum Peppers in Their Primary Center of Diversity in Bolivia and Peru. PLoS ONE, 2015, 10, e0134663.	2.5	53
18	Application of consensus theory to formalize expert evaluations of plant species distribution models. Applied Vegetation Science, 2014, 17, 528-542.	1.9	8

#	Article	IF	CITATIONS
19	Endemic wild potato (Solanum spp.) biodiversity status in Bolivia: Reasons for conservation concerns. Journal for Nature Conservation, 2014, 22, 113-131.	1.8	17
20	Application of Molecular Markers in Spatial Analysis to Optimize In Situ Conservation of Plant Genetic Resources. , 2014, , 67-91.		12
21	Genetic Diversity and Ecological Niche Modelling of Wild Barley: Refugia, Large-Scale Post-LGM Range Expansion and Limited Mid-Future Climate Threats?. PLoS ONE, 2014, 9, e86021.	2.5	46
22	Peach palm (Bactris gasipaes) in tropical Latin America: implications for biodiversity conservation, natural resource management and human nutrition. Biodiversity and Conservation, 2013, 22, 269-300.	2.6	54
23	Development of a cost-effective diversity-maximising decision-support tool for in situ crop genetic resources conservation: The case of cacao. Ecological Economics, 2013, 96, 155-164.	5.7	8
24	An assessment of the genetic diversity of Cedrela balansae C. DC. (Meliaceae) in Northwestern Argentina by means of combined use of SSR and AFLP molecular markers. Biochemical Systematics and Ecology, 2013, 47, 45-55.	1.3	27
25	Selection of Provenances to Adapt Tropical Pine Forestry to Climate Change on the Basis of Climate Analogs. Forests, 2013, 4, 155-178.	2.1	20
26	Present Spatial Diversity Patterns of Theobroma cacao L. in the Neotropics Reflect Genetic Differentiation in Pleistocene Refugia Followed by Human-Influenced Dispersal. PLoS ONE, 2012, 7, e47676.	2.5	107
27	Mapping Genetic Diversity of Cherimoya (Annona cherimola Mill.): Application of Spatial Analysis for Conservation and Use of Plant Genetic Resources. PLoS ONE, 2012, 7, e29845.	2.5	105
28	Adaptation of tropical and subtropical pine plantation forestry to climate change: Realignment of <i>Pinus patula</i> and <i>Pinus tecunumanii</i> genotypes to 2020 planting site climates. Scandinavian Journal of Forest Research, 2009, 24, 483-493.	1.4	13
29	Climate change impact predictions on Pinus patula and Pinus tecunumanii populations in Mexico and Central America. Forest Ecology and Management, 2009, 257, 1566-1576.	3.2	48