Sara Rojas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6163685/publications.pdf

Version: 2024-02-01

36 papers	1,956 citations	18 h-index	377514 34 g-index
37 all docs	37 docs citations	37 times ranked	2625 citing authors

#	Article	IF	CITATIONS
1	Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chemical Reviews, 2020, 120, 8378-8415.	23.0	660
2	Metal-organic frameworks: A novel platform for combined advanced therapies. Coordination Chemistry Reviews, 2019, 388, 202-226.	9.5	197
3	Metal organic frameworks based on bioactive components. Journal of Materials Chemistry B, 2017, 5, 2560-2573.	2.9	180
4	Nanoscaled Zinc Pyrazolate Metal–Organic Frameworks as Drug-Delivery Systems. Inorganic Chemistry, 2016, 55, 2650-2663.	1.9	147
5	Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal–Organic Frameworks in View of Cutaneous Administration. ACS Omega, 2018, 3, 2994-3003.	1.6	128
6	Metal–Organic Frameworks as Efficient Oral Detoxifying Agents. Journal of the American Chemical Society, 2018, 140, 9581-9586.	6.6	74
7	Metal–organic frameworks as potential multi-carriers of drugs. CrystEngComm, 2013, 15, 9364.	1.3	70
8	Metal–Organic Frameworks in Agriculture. ACS Applied Materials & Samp; Interfaces, 2022, 14, 16983-17007.	4.0	53
9	Study of the incorporation and release of the non-conventional half-sandwich ruthenium(ii) metallodrug RAPTA-C on a robust MOF. Chemical Communications, 2011, 47, 11751.	2.2	51
10	Biophysical characterisation, antitumor activity and MOF encapsulation of a half-sandwich ruthenium(<scp>ii</scp>) mitoxantronato system. Journal of Materials Chemistry B, 2014, 2, 2473-2477.	2.9	36
11	Cation Exchange Strategy for the Encapsulation of a Photoactive CO-Releasing Organometallic Molecule into Anionic Porous Frameworks. Inorganic Chemistry, 2016, 55, 6525-6531.	1.9	32
12	Ti-Based nanoMOF as an Efficient Oral Therapeutic Agent. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22188-22193.	4.0	32
13	Aluminum Doped MCM-41 Nanoparticles as Platforms for the Dual Encapsulation of a CO-Releasing Molecule and Cisplatin. Inorganic Chemistry, 2017, 56, 10474-10480.	1.9	27
14	RAPTA-C incorporation and controlled delivery from MIL-100(Fe) nanoparticles. New Journal of Chemistry, 2016, 40, 5690-5694.	1.4	23
15	Diclofenac N-Derivatives as Therapeutic Agents with Anti-Inflammatory and Anti-Cancer Effect. International Journal of Molecular Sciences, 2021, 22, 5067.	1.8	22
16	Improving the genistein oral bioavailability <i>via</i> its formulation into the metal–organic framework MIL-100(Fe). Journal of Materials Chemistry B, 2021, 9, 2233-2239.	2.9	22
17	One-pot preparation of a novel CO-releasing material based on a CO-releasing molecule@metal–organic framework system. Chemical Communications, 2017, 53, 6581-6584.	2.2	21
18	Metal–Organic Framework Microsphere Formulation for Pulmonary Administration. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25676-25682.	4.0	20

#	Article	IF	CITATIONS
19	Ultrafast reproducible synthesis of a Ag-nanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow. Journal of Materials Chemistry A, 2021, 9, 15704-15713.	5.2	19
20	Inorganic mesoporous silicas as vehicles of two novel anthracene-based ruthenium metalloarenes. Journal of Inorganic Biochemistry, 2017, 166, 87-93.	1.5	18
21	Combined Cutaneous Therapy Using Biocompatible Metal-Organic Frameworks. Nanomaterials, 2020, 10, 2296.	1.9	15
22	Pushing the Limits on the Intestinal Crossing of Metal–Organic Frameworks: An <i>Ex Vivo</i> and <i>In Vivo</i> Detailed Study. ACS Nano, 2022, 16, 5830-5838.	7.3	13
23	4.38 The Situation of Metal-Organic Frameworks in Biomedicine \hat{a}^{-} , 2017, 719-749.		12
24	Fully supercritical CO2 preparation of a nanostructured MOF composite with application in cutaneous drug delivery. Journal of Supercritical Fluids, 2021, 178, 105379.	1.6	12
25	Metal–organic frameworks for the removal of the emerging contaminant atenolol under real conditions. Dalton Transactions, 2021, 50, 2493-2500.	1.6	11
26	A novel yttrium-based metal–organic framework for the efficient solvent-free catalytic synthesis of cyanohydrin silyl ethers. Dalton Transactions, 2021, 50, 11720-11724.	1.6	11
27	Towards improving the capacity of UiO-66 for antibiotic elimination from contaminated water. Faraday Discussions, 2021, 231, 356-370.	1.6	9
28	Microencapsulated Isoniazid-Loaded Metal–Organic Frameworks for Pulmonary Administration of Antituberculosis Drugs. Molecules, 2021, 26, 6408.	1.7	9
29	Understanding the Incorporation and Release of Salicylic Acid in Metalâ€Organic Frameworks for Topical Administration. European Journal of Inorganic Chemistry, 2021, 2021, 1325-1331.	1.0	6
30	A gliclazide complex based on palladium towards Alzheimer's disease: promising protective activity against $A\hat{l}^2$ -induced toxicity in <i>C. elegans</i> . Chemical Communications, 2022, 58, 1514-1517.	2.2	6
31	Catalytic Performance and Electrophoretic Behavior of an Yttrium–Organic Framework Based on a Tricarboxylic Asymmetric Alkyne. Inorganic Chemistry, 2022, 61, 1377-1384.	1.9	6
32	Photoluminescent Coordination Polymers Based on Group 12 Metals and 1H-Indazole-6-Carboxylic Acid. Inorganics, 2021, 9, 20.	1.2	5
33	Towards correlating dimensionality and topology in luminescent MOFs based on terephthalato and bispyridyl-like ligands. Dalton Transactions, 2021, 50, 9269-9282.	1.6	5
34	A Mixed Heterobimetallic Y/Eu-MOF for the Cyanosilylation and Hydroboration of Carbonyls. Catalysts, 2022, 12, 299.	1.6	3
35	Nanoscaled zinc pyrazolate metal–organic frameworks as drug-delivery systems. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1190-C1190.	0.0	1
36	Sensing Capacity in Dysprosium Metal–Organic Frameworks Based on 5-Aminoisophthalic Acid Ligand. Sensors, 2022, 22, 3392.	2.1	0