List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/616351/publications.pdf Version: 2024-02-01

		117571	182361
153	3,727	34	51
papers	citations	h-index	g-index
153	153	153	2796
all docs	docs citations	times ranked	citing authors

DUNCAN P FACC

#	Article	IF	CITATIONS
1	Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells. Journal of Materials Chemistry, 1997, 7, 2495-2498.	6.7	157
2	The effect of cobalt oxide sintering aid on electronic transport in Ce0.80Gd0.20O2â^δelectrolyte. Electrochimica Acta, 2003, 48, 1023-1029.	2.6	112
3	The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials. Journal of the European Ceramic Society, 2001, 21, 1831-1835.	2.8	111
4	A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for Protonic Ceramic Fuel Cells. Journal of Power Sources, 2019, 438, 226991.	4.0	100
5	Towards a high thermoelectric performance in rare-earth substituted SrTiO ₃ : effects provided by strongly-reducing sintering conditions. Physical Chemistry Chemical Physics, 2014, 16, 26946-26954.	1.3	96
6	Impedance analysis of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramics consolidated from micro-granules. Ceramics International, 2014, 40, 10593-10600.	2.3	92
7	Evolution of reduced Ti containing phase(s) in MgH 2 /TiO 2 system and its effect on the hydrogen storage behavior of MgH 2. Journal of Power Sources, 2017, 362, 174-183.	4.0	83
8	Title is missing!. , 2002, 9, 199-207.		82
9	Stability and mixed ionic–electronic conductivity of (Sr,La)(Ti,Fe)O3â^δ perovskites. Solid State Ionics, 2003, 156, 45-57.	1.3	81
10	Designing strontium titanate-based thermoelectrics: insight into defect chemistry mechanisms. Journal of Materials Chemistry A, 2017, 5, 3909-3922.	5.2	81
11	Fabrication and electrochemical performance of a stable, anode supported thin BaCe0.4Zr0.4Y0.2O3-Î ^r electrolyte Protonic Ceramic Fuel Cell. Journal of Power Sources, 2015, 278, 582-589.	4.0	73
12	Boosting Thermoelectric Performance by Controlled Defect Chemistry Engineering in Ta-Substituted Strontium Titanate. Chemistry of Materials, 2015, 27, 4995-5006.	3.2	67
13	Structure, densification and electrical properties of Gd3+ and Cu2+ co-doped ceria solid electrolytes for SOFC applications: Effects of Gd2O3 content. Ceramics International, 2018, 44, 2745-2751.	2.3	65
14	Effects of firing conditions and addition of Co on bulk and grain boundary properties of CGO. Solid State Ionics, 2005, 176, 2799-2805.	1.3	59
15	Phase Relations at 1500°C in the Ternary System ZrO2–Y2O3–TiO2. Journal of Solid State Chemistry, 1999, 143, 273-276.	1.4	57
16	Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8â^'xPr0.2O2â^'δ, x=0, 0.15, 0.2. Journal of Solid State Chemistry, 2006, 179, 3347-3356.	1.4	57
17	Synthesis and conductivity of Ba(Ce,Zr,Y)O3â^´Î´ electrolytes forÂPCFCs by new nitrate-free combustion method. International Journal of Hydrogen Energy, 2013, 38, 8461-8470.	3.8	55
18	Transport-number determination of a protonic ceramic electrolyte membrane via electrode-polarisation correction with the Gorelov method. Journal of Power Sources, 2014, 245, 445-455.	4.0	53

#	Article	IF	CITATIONS
19	High oxygen permeability in fluorite-type Ce0.8Pr0.2O2â ^{~1} δ via the use of sintering aids. Journal of Membrane Science, 2007, 299, 1-7.	4.1	51
20	Ionic and electronic conductivity of Yb2+xTi2â^'xO7â^'x/2 materials. Solid State Ionics, 2006, 177, 1785-1788.	1.3	49
21	Role of chemical interaction between MgH 2 and TiO 2 additive on the hydrogen storage behavior of MgH 2. Applied Surface Science, 2017, 420, 740-745.	3.1	49
22	Cathodic polarisation of composite LSCF-SDC IT-SOFC electrode synthesised by one-step microwave self-assisted combustion. Journal of the European Ceramic Society, 2019, 39, 1846-1853.	2.8	48
23	Synthesis and characterisation of Ni–SrCe0.9Yb0.1O3â^î′ cermet anodes for protonic ceramic fuel cells. Solid State Ionics, 2003, 158, 333-342.	1.3	44
24	Solution blow spun nickel oxide/carbon nanocomposite hollow fibres as an efficient oxygen evolution reaction electrocatalyst. International Journal of Hydrogen Energy, 2019, 44, 14877-14888.	3.8	44
25	The importance of phase purity in Ni–BaZr _{0.85} Y _{0.15} O _{3â^'Î} cermet anodes – novel nitrate-free combustion route and electrochemical study. RSC Advances, 2013, 3, 859-869.	1.7	43
26	Enhanced Low-Temperature Proton Conduction in Sr _{0.02} La _{0.98} NbO _{4â^îî} by Scheelite Phase Retention. Chemistry of Materials, 2010, 22, 6673-6683.	3.2	42
27	Hydrogen storage characteristics of magnesium impregnated on the porous channels of activated charcoal scaffold. International Journal of Hydrogen Energy, 2014, 39, 20045-20053.	3.8	41
28	B-site substitutions in LaNb1â^'xMxO4â^'δ materials in the search for potential proton conductors (M=Ga,) Tj ETG	Qq0 0 0 rg 1.4	BT /Overlock
29	Electrical characterization of highly Titania doped YSZ. Ionics, 1998, 4, 215-219.	1.2	39
30	Modulated Fluorite-Type Structure of Materials from the (1â^'x)Y0.5Zr0.5O1.75â^'xY0.75Nb0.25O1.75(0 â‰ ¤ â9	‰ <mark>)</mark> яті ETQ	م0 0 rgBT /0 39 0 rgBT /0
31	Development of novel anodes for solid oxide fuel cells. Catalysis Today, 1997, 38, 467-472.	2.2	38
32	Mechanosynthesis of nanopowders of the proton-conducting electrolyte material Ba(Zr, Y)O3â^îr. Journal of Solid State Chemistry, 2009, 182, 2149-2156.	1.4	35
33	Transport Properties of Fluorite-Type Ce _{0.8} Pr _{0.2} O _{2â[^]î} : Optimization via the Use of Cobalt Oxide Sintering Aid. Chemistry of Materials, 2009, 21, 381-391.	3.2	35
34	Design of SrTiO ₃ -Based Thermoelectrics by Tungsten Substitution. Journal of Physical Chemistry C, 2015, 119, 4466-4478.	1.5	35
35	Mixed conductivity, thermal expansion, and oxygen permeability of Ce(Pr,Zr)O. Solid State Ionics, 2005, 176, 1723-1730.	1.3	34
36	The defect chemistry of Ce(Pr, Zr)O2â^Î. Journal of Solid State Chemistry, 2006, 179, 1469-1477.	1.4	33

#	Article	IF	CITATIONS
37	Electrochemical behaviour and degradation of (Ni,M)/YSZ cermet electrodes (M=Co,Cu,Fe) for high temperature applications of solid electrolytes. Journal of the European Ceramic Society, 2004, 24, 1355-1358.	2.8	32
38	The impact of porosity, pH 2 and pH 2 O on the polarisation resistance of Ni–BaZr 0.85 Y 0.15 O 3â^î^ cermet anodes for Protonic Ceramic Fuel Cells (PCFCs). International Journal of Hydrogen Energy, 2014, 39, 21231-21241.	3.8	32
39	Pr ₂ O ₂ SO ₄ –La _{0.6} Sr _{0.4} Co _{0.2} Fe< a new category of composite cathode for intermediate temperature-solid oxide fuel cells. Journal of Materials Chemistry A, 2015, 3, 12636-12641.	sub>0.8< 5.2	/sub>O <sul 32</sul
40	Formation of Mg–Nb–O rock salt structures in a series of mechanochemically activated MgH2Â+ÂnNb2O5 (nÂ=Â0.083–1.50) mixtures. International Journal of Hydrogen Energy, 2016, 41, 2677-2688	3.8	31
41	Understanding the cathodic polarisation behaviour of the misfit [Ca2CoO3â^î]q[CoO2] (C349) as oxygen electrode for IT-SOFC. Electrochimica Acta, 2018, 285, 214-220.	2.6	31
42	Transport in ceria electrolytes modified with sintering aids: effects on oxygen reduction kinetics. Journal of Solid State Electrochemistry, 2004, 8, 618.	1.2	30
43	Conductivity recovery by redox cycling of yttrium doped barium zirconate proton conductors and exsolution of Ni-based sintering additives. Journal of Power Sources, 2017, 339, 93-102.	4.0	30
44	Structural studies on the optimisation of fast oxide ion transport. Solid State Ionics, 2000, 136-137, 879-885.	1.3	29
45	Chemically transformed additive phases in Mg2TiO4 and MgTiO3 loaded hydrogen storage system MgH2. Applied Surface Science, 2019, 472, 99-104.	3.1	29
46	Exploring the impact of sintering additives on the densification and conductivity of BaCe0.3Zr0.55Y0.15O3-δelectrolyte for protonic ceramic fuel cells. Journal of Alloys and Compounds, 2021, 862, 158640.	2.8	29
47	Formation of Mg _x Nb _y O _{x+y} through the Mechanochemical Reaction of MgH ₂ and Nb ₂ O ₅ , and Its Effect on the Hydrogenâ€&torage Behavior of MgH ₂ . ChemPhysChem, 2016, 17, 178-183.	1.0	28
48	Nonwoven Ni–NiO/carbon fibers for electrochemical water oxidation. International Journal of Hydrogen Energy, 2021, 46, 3798-3810.	3.8	28
49	Electrochemical behaviour of Ni-BZO and Ni-BZY cermet anodes for Protonic Ceramic Fuel Cells (PCFCs) – A comparative study. Electrochimica Acta, 2015, 154, 387-396.	2.6	26
50	Crystal structure, phase stoichiometry and chemical environment of MgxNbyOx+y nanoparticles and their impact on hydrogen storage in MgH2. International Journal of Hydrogen Energy, 2016, 41, 11709-11715.	3.8	26
51	Proton conductivity in yttrium-doped barium cerate under nominally dry reducing conditions for application in chemical synthesis. Journal of Materials Chemistry A, 2019, 7, 18135-18142.	5.2	25
52	Modeling of electrical conductivity in the proton conductor Ba0.85K0.15ZrO3â~δ. Electrochimica Acta, 2015, 165, 443-449.	2.6	24
53	A comprehensive review of NOx and N2O mitigation from industrial streams. Renewable and Sustainable Energy Reviews, 2022, 155, 111916.	8.2	24
54	Electrochemical assessment of Ca3Co4O9 nanofibres obtained by Solution Blow Spinning. Materials Letters, 2018, 221, 81-84.	1.3	23

#	Article	IF	CITATIONS
55	Transformation of Metallic Ti to TiH ₂ Phase in the Ti/MgH ₂ Composite and Its Influence on the Hydrogen Storage Behavior of MgH ₂ . ChemPhysChem, 2020, 21, 1195-1201.	1.0	23
56	Chemical transformation of additive phase in MgH2/CeO2 hydrogen storage system and its effect on catalytic performance. Applied Surface Science, 2021, 561, 150062.	3.1	23
57	Boosting the oxygen reduction reaction of the misfit [Ca2CoO3-Î]q[CoO2] (C349) by the addition of praseodymium oxide. Journal of Alloys and Compounds, 2019, 788, 148-154.	2.8	22
58	Nickel-copper based anodes for solid oxide fuel cells running on hydrogen and biogas: Study using ceria-based electrolytes with electronic short-circuiting correction. Journal of Power Sources, 2019, 438, 227041.	4.0	21
59	Evidence of three types of short range ordered fluorite structure in the (1 – x) Y0.15Zr0.85O1.93–x Y0.75Nb0.25O1.75(0 â‰ ¤ ≤1) system. Journal of Materi	als Chemis	stry, ² 005, 15
60	Reduced magnesium titanate electrodes for solid oxide fuel cells. Solid State Ionics, 1994, 72, 235-239.	1.3	19
61	Redox behavior and transport properties of La0.5â^'xSr0.5â^'xFe0.4Ti0.6O3â^'δ (0 <x<0.1) by<br="" validated="">Mössbauer spectroscopy. Solid State Ionics, 2002, 146, 87-93.</x<0.1)>	1.3	19
62	Cobalt-free perovskite Pr0.5Sr0.5Fe1â^'xCuxO3â^'δ (PSFC) as a cathode material for intermediate temperature solid oxide fuel cells. Materials Chemistry and Physics, 2016, 180, 256-262.	2.0	19
63	Electrochemical assessment of novel misfit Ca-cobaltite-based composite SOFC cathodes synthesized by solution blow spinning. Journal of the European Ceramic Society, 2018, 38, 2562-2569.	2.8	19
64	Polarisation mechanism of the misfit Ca-cobaltite electrode for reversible solid oxide cells. Electrochimica Acta, 2021, 373, 137928.	2.6	19
65	Stability of Ba(Zr,Pr,Y)O3â^îr̂ materials for potential application in electrochemical devices. Journal of Solid State Chemistry, 2010, 183, 2826-2834.	1.4	18
66	Electrical properties and thermal expansion of strontium aluminates. Journal of Alloys and Compounds, 2014, 613, 232-237.	2.8	18
67	Effect of the addition mechanism of ZnO sintering aid on densification, microstructure and electrical properties of Ba(Zr,Y)O3-1´ proton-conducting perovskite. International Journal of Hydrogen Energy, 2021, 46, 26466-26477.	3.8	18
68	Composite of calcium cobaltite with praseodymium-doped ceria: A promising new oxygen electrode for solid oxide cells. International Journal of Hydrogen Energy, 2021, 46, 28258-28269.	3.8	18
69	Active catalytic species generated in situ in zirconia incorporated hydrogen storage material magnesium hydride. Journal of Magnesium and Alloys, 2022, 10, 786-796.	5.5	18
70	Spinel ferrite MFe2O4 (MÂ=ÂNi, Co, or Cu) nanoparticles prepared by a proteic sol-gel route for oxygen evolution reaction. Advanced Powder Technology, 2022, 33, 103391.	2.0	17
71	Cu-Ce0.8Gd0.2O2â^1̂ materials as SOFC electrolyte and anode. Ionics, 2003, 9, 214-219.	1.2	16
72	Characterization of Diffuse Scattering in Yttria-Stabilized Zirconia by Electron Diffraction and High-Resolution Transmission Electron Microscopy. Chemistry of Materials, 2008, 20, 5933-5938.	3.2	16

#	Article	IF	CITATIONS
73	Guidelines for improving resistance to CO2 of materials for solid state electrochemical systems. Solid State Ionics, 2011, 192, 16-20.	1.3	16
74	Dehydrogenation Properties of Magnesium Hydride Loaded with Fe, Feâ^'C, and Feâ^'Mg Additives. ChemPhysChem, 2017, 18, 287-291.	1.0	16
75	In-situ redox cycling behaviour of Ni–BaZr0.85Y0.15O3â^î́r cermet anodes for Protonic Ceramic Fuel Cells. International Journal of Hydrogen Energy, 2014, 39, 19780-19788.	3.8	15
76	Synthesis of catalytically active rock salt structured Mg x Nb 1â^'x O nanoparticles for MgH 2 system. International Journal of Hydrogen Energy, 2014, 39, 18984-18988.	3.8	15
77	Structural and defect chemistry guidelines for Sr(V,Nb)O3-based SOFC anode materials. Physical Chemistry Chemical Physics, 2015, 17, 10749-10758.	1.3	15
78	Two step mechanochemical synthesis of Nb doped MgO rock salt nanoparticles and its application for hydrogen storage in MgH2. International Journal of Hydrogen Energy, 2016, 41, 11716-11722.	3.8	15
79	DFRTtoEIS: An easy approach to verify the consistency of a DFRT generated from an impedance spectrum. Electrochimica Acta, 2021, 366, 137429.	2.6	15
80	Effect of humidification on the grain boundary conductivity and space-charge effects in yttrium-doped barium cerate. International Journal of Hydrogen Energy, 2021, 46, 23828-23838.	3.8	15
81	Oxide ion transport in highly defective cubic stabilized zirconias. Ionics, 1995, 1, 279-285.	1.2	14
82	Effect of phosphorus additions on the sintering and transport properties of proton conducting BaZr0.85Y0.15O3â^î. Journal of Solid State Chemistry, 2012, 191, 27-32.	1.4	14
83	Methodology for the study of mixed transport properties of a Zn-doped SrZr _{0.9} Y _{0.1} O _{3â^l´} electrolyte under reducing conditions. Journal of Materials Chemistry A, 2015, 3, 11098-11110.	5.2	14
84	Increased performance by use of a mixed conducting buffer layer, terbia-doped ceria, for Nd2NiO4+δ SOFC/SOEC oxygen electrodes. International Journal of Hydrogen Energy, 2019, 44, 31466-31474.	3.8	14
85	Creating new surface-exchange pathways on the misfit Ca-cobaltite electrode by the addition of an active interlayer. Journal of Power Sources, 2021, 510, 230417.	4.0	14
86	One step high pressure mechanochemical synthesis of reversible alanates NaAlH4 and KAlH4. International Journal of Hydrogen Energy, 2015, 40, 4916-4924.	3.8	13
87	Enhancing electrochemical performance by control of transport properties in buffer layers – solid oxide fuel/electrolyser cells. Physical Chemistry Chemical Physics, 2015, 17, 11527-11539.	1.3	13
88	Oxygen permeability of mixed-conducting Ce0.8Tb0.2O2â^' membranes: Effects of ceramic microstructure and sintering temperature. Journal of Membrane Science, 2015, 475, 414-424.	4.1	13
89	Thermal evolution of structures and conductivity of Pr-substituted BaZr _{0.7} Ce _{0.2} Y _{0.1} O _{3â^î^} : potential cathode components for protonic ceramic fuel cells. Journal of Materials Chemistry A, 2018, 6, 5324-5334.	5.2	13
90	Underscoring the transport properties of yttrium-doped barium cerate in nominally dry oxidising conditions. Electrochimica Acta, 2020, 334, 135625.	2.6	13

#	Article	IF	CITATIONS
91	La4Ni3O10±δ– BaCe0.9Y0.1O3-δ cathodes for proton ceramic fuel cells; short-circuiting analysis using BaCe0.9Y0.1O3-δ symmetric cells. International Journal of Hydrogen Energy, 2021, 46, 13594-13605.	3.8	13
92	Analysis of La4Ni3O10±δ-BaCe0.9Y0.1O3-δ Composite Cathodes for Proton Ceramic Fuel Cells. Applied Sciences (Switzerland), 2021, 11, 3407.	1.3	13
93	Ceria based mixed conductors with adjusted electronic conductivity in the bulk and/or along grain boundaries. Solid State Ionics, 2009, 180, 896-899.	1.3	12
94	Enhanced BaZrO ₃ mechanosynthesis by the use of metastable ZrO ₂ precursors. Dalton Transactions, 2014, 43, 9324-9333.	1.6	12
95	Preparation of one-step NiO/Ni-CGO composites using factorial design. Ceramics International, 2016, 42, 18166-18172.	2.3	12
96	Proteic sol–gel synthesis of Gd-doped ceria: a comprehensive structural, chemical, microstructural and electrical analysis. Journal of Materials Science, 2020, 55, 16864-16878.	1.7	12
97	Mechanochemical processing of BaZr1â^'YyO3â^' (yÂ=Â0.15, 0.20) protonic ceramic electrolytes: Phase purity, microstructure, electrical properties and comparison with other preparation routes. International Journal of Hydrogen Energy, 2021, 46, 13606-13621.	3.8	12
98	The systems Zr(Nb,Ti)(R)O2â~δ, R=Yb, Ca—optimization of mixed conductivity and comparison with results of other systems (R=Y and Gd). Journal of Solid State Chemistry, 2003, 172, 277-287.	1.4	11
99	Effects of firing schedule on solubility limits and transport properties of ZrO2–TiO2–Y2O3 fluorites. Journal of Solid State Chemistry, 2007, 180, 2371-2376.	1.4	11
100	Impedance analysis of Sr-substituted CePO4 with mixed protonic and p-type electronic conduction. Ceramics International, 2009, 35, 1481-1486.	2.3	11
101	Thermodynamic restrictions on mechanosynthesis of strontium titanate. Journal of Solid State Chemistry, 2012, 185, 143-149.	1.4	11
102	Mixed ionic-electronic conductivity and thermochemical expansion of Ca and Mo co-substituted pyrochlore-type Gd ₂ Ti ₂ O ₇ . RSC Advances, 2016, 6, 70186-70196.	1.7	11
103	Electrochemical assessment of one-step Cu-CGO cermets under hydrogen and biogas fuels. Materials Letters, 2017, 191, 141-144.	1.3	11
104	Synthesis of Co–Ni and Cu–Ni based-catalysts for dry reforming of methane as potential components for SOFC anodes. Ceramics International, 2021, 47, 33191-33201.	2.3	11
105	The optimisation of mixed conduction in potential S.O.F.C. anode materials. lonics, 1998, 4, 61-71.	1.2	10
106	Mechanochemical preparation, sintering aids and hybrid microwave sintering in the proton conductor Sr0.02La0.98Nb1-xVxO4-δ, xÂ=Â0, 0.15. International Journal of Hydrogen Energy, 2012, 37, 7252-7261.	3.8	9
107	Site Redistribution, Partial Frozen-in Defect Chemistry, and Electrical Properties of Ba1–x(Zr,Pr)O3â~δ. Inorganic Chemistry, 2016, 55, 8552-8563.	1.9	9
108	Exploring the mixed transport properties of sulfur(<scp>vi</scp>)-doped Ba ₂ In ₂ O ₅ for intermediate-temperature electrochemical applications. Journal of Materials Chemistry A, 2016, 4, 11069-11076.	5.2	9

#	Article	IF	CITATIONS
109	Structure and Electrical-Transport Relations in Ba(Zr,Pr)O _{3â^ʾδ} Perovskites. Inorganic Chemistry, 2017, 56, 9120-9131.	1.9	9
110	Tailoring the anion stoichiometry and oxidation kinetics of vanadium (oxy)nitride by the control of ammonolysis conditions. Journal of Materials Chemistry C, 2022, 10, 5608-5620.	2.7	9
111	Non-aqueous stabilized suspensions of BaZr0.85Y0.15O3â ^{^^} î´ proton conducting electrolyte powders for thin film preparation. Journal of the European Ceramic Society, 2013, 33, 1833-1840.	2.8	8
112	Structural and electrical properties of strontium substituted Y2BaNiO5. Journal of Alloys and Compounds, 2015, 620, 91-96.	2.8	8
113	Interaction of zirconia with magnesium hydride and its influence on the hydrogen storage behavior of magnesium hydride. International Journal of Hydrogen Energy, 2022, 47, 21760-21771.	3.8	8
114	Effects of composition and frozen-in conditions on bulk and grain boundary conductivities of Yb2Ti2O7-based materials. Solid State Ionics, 2009, 180, 774-777.	1.3	7
115	Ni-YSZ cermets for solid oxide fuel cell anodes via two-step firing. International Journal of Hydrogen Energy, 2014, 39, 15046-15056.	3.8	7
116	Processing and characterisation of BaZr _{0.8} Y _{0.2} O _{3â^'<i>δ</i>} proton conductor densified at 1200 °C. Journal of Materials Chemistry A, 2022, 10, 4428-4439.	5.2	7
117	Effects of Fe-additions on sintering and transport properties of Yb2Ti2â^'yFeyO7â^'δ. Journal of the European Ceramic Society, 2007, 27, 4283-4286.	2.8	6
118	Simulation studies and safety analysis of high pressure milling vials for the direct synthesis ofÂhigh capacity metal hydrides. International Journal of Hydrogen Energy, 2015, 40, 5006-5012.	3.8	6
119	Silver–praseodymium oxy-sulfate cermet: A new composite cathode for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2016, 306, 611-616.	4.0	6
120	Exploring the Thermoelectric Performance of BaGd ₂ NiO ₅ Haldane Gap Materials. Inorganic Chemistry, 2017, 56, 2354-2362.	1.9	6
121	Structures, Phase Fields, and Mixed Protonic–Electronic Conductivity of Ba-Deficient, Pr-Substituted BaZr0.7Ce0.2Y0.1O3â°ÌÎ. Inorganic Chemistry, 2018, 57, 15023-15033.	1.9	6
122	Fe-doped calcium cobaltites as electrocatalysts for oxygen evolution reaction. Ceramics International, 2021, 47, 26109-26118.	2.3	6
123	A high-performance oxygen electrode for solid oxide cells: Compositional optimisation of barium cobaltite-based composites. Journal of Alloys and Compounds, 2022, 906, 164382.	2.8	6
124	Fe0.5Co0.5-Co1.15Fe1.15O4/carbon composite nanofibers prepared by solution blow spinning: Structure, morphology, Mössbauer spectroscopy, and application as catalysts for electrochemical water oxidation. International Journal of Hydrogen Energy, 2022, 47, 25266-25279.	3.8	6
125	Toward improved chemical stability of yttriumâ€doped barium cerate by the introduction of nickel oxide. Journal of the American Ceramic Society, 2022, 105, 6271-6283.	1.9	6
126	Elucidating Evidence for the In Situ Reduction of Graphene Oxide by Magnesium Hydride and the Consequence of Reduction on Hydrogen Storage. Catalysts, 2022, 12, 735.	1.6	6

DUNCAN P FAGG

#	Article	IF	CITATIONS
127	Effects of Yb:Ti ratio on transport properties of Yb2±xTi2±xO7±δ. Solid State Ionics, 2008, 179, 1046-1049.	1.3	5
128	Comparative study of fluorite-type ceria-based Ce1â^'x Ln x O2â^'δ (LnÂ=ÂTb, Gd, and Pr) mixed ionic electronic conductors densified at low temperatures. Journal of Materials Science, 2016, 51, 10293-10300.	1.7	5
129	Unique dielectric features of a ceramic-semiconductor nanocomposite MgNb2O6+ 0.25Zn0.5Cd0.5S. Applied Surface Science, 2017, 424, 127-131.	3.1	5
130	Solid solution limits and electrical properties of scheelite SryLa1-yNb1-xVxO4-Î [^] materials for x = 0.25 and 0.30 as potential proton conducting ceramic electrolytes. International Journal of Hydrogen Energy, 2018, 43, 18682-18690.	3.8	5
131	Electrochemical behaviour of magnesium hydride-added titania anode for Li-ion battery. Electrochimica Acta, 2021, 394, 139142.	2.6	5
132	The effects of polarisation on the performance of the Ba2Co9O14–Ce0.8Gd0.2O2- composite electrode for fuel cells and electrolysers. International Journal of Hydrogen Energy, 2022, 47, 11270-11278.	3.8	5
133	Tailoring the properties of dense yttriumâ€doped barium zirconate ceramics with nickel oxide additives by manipulation of the sintering profile. International Journal of Energy Research, 2022, 46, 21989-22000.	2.2	5
134	Temperature Dependence of the Henry's Law Constant for Hydrogen Storage in NaA Zeolites: A Monte Carlo Simulation Study. Journal of Nanoscience and Nanotechnology, 2012, 12, 6785-6791.	0.9	4
135	Microwave Assisted Self-Combustion Synthesis and Electrochemical Performance of LSCF-SDC Composite Cathodes. ECS Transactions, 2013, 53, 7-15.	0.3	4
136	Interaction of magnesium hydride clusters with Nb doped MgO additive studied by density functional calculations. RSC Advances, 2016, 6, 61200-61206.	1.7	4
137	Changing the oxygen reaction mechanism in composite electrodes by the addition of ionic- or ambipolar-conducting phases: Series or parallel pathways. Electrochimica Acta, 2022, 418, 140383.	2.6	4
138	Anatase titania as magnesium host in Mg ion rechargeable battery with magnesium perchlorate/ethylmagnesium bromide electrolytes. Journal of Materials Science, 2022, 57, 8442-8454.	1.7	3
139	Tuning chemical and surface composition of nickel cobaltite-based nanocomposites through solvent and its impact on electrocatalytic activity for oxygen evolution. Journal of Materials Science, 2022, 57, 5097-5117.	1.7	3
140	Boosted electrochemical performance of caâ€cobaltiteâ€based composite electrodes for reversible solid oxide cells. International Journal of Energy Research, 2022, 46, 22070-22077.	2.2	3
141	Sintering and Oxygen Transport in Ce[sub 0.8]Pr[sub 0.2]O[sub 2â^îÎ]: A Comparative Study of Mn and Co Oxide Additives. Journal of the Electrochemical Society, 2009, 156, F47.	1.3	2
142	Development of semitransparent wood-polymer composites. Journal of Vinyl and Additive Technology, 2012, 18, 95-104.	1.8	2
143	Exploring the effects of silica and zirconia additives on electrical and redox properties of ferrospinels. Journal of the European Ceramic Society, 2017, 37, 2621-2628.	2.8	2
144	Metal Oxide Additives Incorporated Hydrogen Storage Systems: Formation of In Situ Catalysts and Mechanistic Understanding. Environmental Chemistry for A Sustainable World, 2019, , 215-245.	0.3	2

#	Article	IF	CITATIONS
145	Unravelling the Effects of Calcium Substitution in BaGd ₂ CoO ₅ Haldane Gap 1D Material and Its Thermoelectric Performance. Journal of Physical Chemistry C, 2020, 124, 13017-13025.	1.5	2
146	Nanostructured advanced materials for hydrogen storage. , 2020, , 97-163.		2
147	Analysis of the Electrochemical Transport Properties of Doped Barium Cerate for Proton Conductivity in Low Humidity Conditions: A Review. , 0, , .		1
148	Electrocatalytic oxygen reduction and evolution reactions in solid oxide cells (SOCs): A brief review. , 2022, , 439-456.		1
149	The electrochemical promotion of nitrous oxide reduction on a lanthanum strontium iron cobalt cathode. International Journal of Energy Research, 0, , .	2.2	1
150	Selected Peer-Reviewed Articles from International Conference on Advanced Nano Materials (ANM) Tj ETQqO 0 0	rgBT /Ove	rlock 10 Tf 5
151	Misfit-layered Ca-cobaltite–based cathodes for intermediate-temperature solid oxide fuel cell. , 2020, , 347-377.		0

152	Electrochemical saturation of antimony-lead melts with oxygen: Cell design and measurement. Electrochimica Acta, 2021, 395, 139206.	2.6	0

153 Solid oxide cells (SOCs) in heterogeneous catalysis. , 2022, , 427-438.