Daniel C Liebler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6163268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics, 2010, 26, 966-968.	1.8	3,968
2	Reassessment of Exosome Composition. Cell, 2019, 177, 428-445.e18.	13.5	1,786
3	Proteogenomic characterization of human colon and rectal cancer. Nature, 2014, 513, 382-387.	13.7	1,219
4	Multi-site assessment of the precision and reproducibility of multiple reaction monitoring–based measurements of proteins in plasma. Nature Biotechnology, 2009, 27, 633-641.	9.4	958
5	Glucose-Independent Glutamine Metabolism via TCA Cycling for Proliferation and Survival in B Cells. Cell Metabolism, 2012, 15, 110-121.	7.2	923
6	Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer. Cell, 2016, 166, 755-765.	13.5	804
7	Repeatability and Reproducibility in Proteomic Identifications by Liquid Chromatographyâ^'Tandem Mass Spectrometry. Journal of Proteome Research, 2010, 9, 761-776.	1.8	505
8	Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities. Cell, 2019, 177, 1035-1049.e19.	13.5	498
9	Proteomic Analysis of Exosomes from Mutant KRAS Colon Cancer Cells Identifies Intercellular Transfer of Mutant KRAS. Molecular and Cellular Proteomics, 2013, 12, 343-355.	2.5	431
10	Identification of Sensor Cysteines in Human Keap1 Modified by the Cancer Chemopreventive Agent Sulforaphane. Chemical Research in Toxicology, 2005, 18, 1917-1926.	1.7	363
11	Sample preparation and digestion for proteomic analyses using spin filters. Proteomics, 2005, 5, 1742-1745.	1.3	356
12	Ischemia in Tumors Induces Early and Sustained Phosphorylation Changes in Stress Kinase Pathways but Does Not Affect Global Protein Levels. Molecular and Cellular Proteomics, 2014, 13, 1690-1704.	2.5	323
13	Targeted Quantitation of Proteins by Mass Spectrometry. Biochemistry, 2013, 52, 3797-3806.	1.2	321
14	Depletion of Abundant Plasma Proteins and Limitations of Plasma Proteomics. Journal of Proteome Research, 2010, 9, 4982-4991.	1.8	309
15	The Role of Metabolism in the Antioxidant Function of Vitamin E. Critical Reviews in Toxicology, 1993, 23, 147-169.	1.9	301
16	Enzymatic activation of chemicals to toxic metabolites. CRC Critical Reviews in Toxicology, 1985, 14, 259-307.	4.9	295
17	Elucidating mechanisms of drug-induced toxicity. Nature Reviews Drug Discovery, 2005, 4, 410-420.	21.5	284
18	Specific Patterns of Electrophile Adduction Trigger Keap1 Ubiquitination and Nrf2 Activation. Journal of Biological Chemistry, 2005, 280, 31768-31775.	1.6	280

#	Article	IF	CITATIONS
19	Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell, 2020, 183, 1436-1456.e31.	13.5	273
20	Clustering a Chemical Inventory for Safety Assessment of Fragrance Ingredients: Identifying Read-Across Analogs to Address Data Gaps. Chemical Research in Toxicology, 2020, 33, 1709-1718.	1.7	273
21	Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7420-7425.	3.3	253
22	Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discovery, 2013, 3, 1108-1112.	7.7	243
23	The Reduction of α-Tocopherolquinone by Human NAD(P)H:Quinone Oxidoreductase: The Role of α-Tocopherolhydroquinone as a Cellular Antioxidant. Molecular Pharmacology, 1997, 52, 300-305.	1.0	230
24	Protein Damage by Reactive Electrophiles: Targets and Consequences. Chemical Research in Toxicology, 2008, 21, 117-128.	1.7	220
25	Site-specific mapping and quantification of protein S-sulphenylation in cells. Nature Communications, 2014, 5, 4776.	5.8	208
26	Human Monomethylarsonic Acid (MMAV) Reductase Is a Member of the Glutathione-S-transferase Superfamily. Chemical Research in Toxicology, 2001, 14, 1051-1057.	1.7	203
27	Recommendations for the Generation, Quantification, Storage, and Handling of Peptides Used for Mass Spectrometry–Based Assays. Clinical Chemistry, 2016, 62, 48-69.	1.5	187
28	Antioxidant Chemistry of Green Tea Catechins. Identification of Products of the Reaction of (â^')-Epigallocatechin Gallate with Peroxyl Radicals. Chemical Research in Toxicology, 1999, 12, 382-386.	1.7	181
29	Identification of Protein Targets of 4-Hydroxynonenal Using Click Chemistry for ex Vivo Biotinylation of Azido and Alkynyl Derivatives. Chemical Research in Toxicology, 2008, 21, 432-444.	1.7	181
30	Covalent Modification at Cys151 Dissociates the Electrophile Sensor Keap1 from the Ubiquitin Ligase CUL3. Chemical Research in Toxicology, 2008, 21, 705-710.	1.7	178
31	Equivalence of Protein Inventories Obtained from Formalin-fixed Paraffin-embedded and Frozen Tissue in Multidimensional Liquid Chromatography-Tandem Mass Spectrometry Shotgun Proteomic Analysis. Molecular and Cellular Proteomics, 2009, 8, 1988-1998.	2.5	178
32	The Expanding Landscape of the Thiol Redox Proteome. Molecular and Cellular Proteomics, 2016, 15, 1-11.	2.5	174
33	Performance Metrics for Liquid Chromatography-Tandem Mass Spectrometry Systems in Proteomics Analyses. Molecular and Cellular Proteomics, 2010, 9, 225-241.	2.5	167
34	Protein Identification Using Customized Protein Sequence Databases Derived from RNA-Seq Data. Journal of Proteome Research, 2012, 11, 1009-1017.	1.8	156
35	Large-Scale Interlaboratory Study to Develop, Analytically Validate and Apply Highly Multiplexed, Quantitative Peptide Assays to Measure Cancer-Relevant Proteins in Plasma. Molecular and Cellular Proteomics, 2015, 14, 2357-2374.	2.5	153
36	CPTAC Assay Portal: a repository of targeted proteomic assays. Nature Methods, 2014, 11, 703-704.	9.0	150

#	Article	IF	CITATIONS
37	Interlaboratory Study Characterizing a Yeast Performance Standard for Benchmarking LC-MS Platform Performance. Molecular and Cellular Proteomics, 2010, 9, 242-254.	2.5	148
38	Antioxidant Chemistry of Green Tea Catechins. New Oxidation Products of (â^')-Epigallocatechin Gallate and (â^')-Epigallocatechin from Their Reactions with Peroxyl Radicals. Chemical Research in Toxicology, 2000, 13, 801-810.	1.7	147
39	Peroxyl radical oxidation of .betacarotene: formation of .betacarotene epoxides. Chemical Research in Toxicology, 1991, 4, 290-295.	1.7	142
40	Cytosolic and Nuclear Protein Targets of Thiol-Reactive Electrophiles. Chemical Research in Toxicology, 2006, 19, 20-29.	1.7	141
41	Gas Chromatography–Mass Spectrometry Analysis of Vitamin E and Its Oxidation Products. Analytical Biochemistry, 1996, 236, 27-34.	1.1	138
42	Global Shifts in Protein Sumoylation in Response to Electrophile and Oxidative Stress. Chemical Research in Toxicology, 2004, 17, 1706-1715.	1.7	137
43	Antioxidant Reactions of β-Carotene:  Identification of Carotenoidâ^'Radical Adducts. Chemical Research in Toxicology, 1996, 9, 8-11.	1.7	136
44	Isolation and identification of singlet oxygen oxidation products of .betacarotene. Chemical Research in Toxicology, 1993, 6, 542-547.	1.7	132
45	Global Analysis of Protein Damage by the Lipid Electrophile 4-Hydroxy-2-nonenal. Molecular and Cellular Proteomics, 2009, 8, 670-680.	2.5	130
46	Oxidation of vitamin E: evidence for competing autoxidation and peroxyl radical trapping reactions of the American Chemical Society, 1990, 112, 6995-7000.	6.6	128
47	Phosphoproteomic mass spectrometry profiling links Src family kinases to escape from HER2 tyrosine kinase inhibition. Oncogene, 2011, 30, 4163-4174.	2.6	128
48	Final Report of the Safety Assessment of Kojic Acid as Used in Cosmetics. International Journal of Toxicology, 2010, 29, 244S-273S.	0.6	125
49	α,β-Unsaturated Aldehydes Accelerate Oxymyoglobin Oxidation. Journal of Agricultural and Food Chemistry, 1999, 47, 3140-3144.	2.4	124
50	Olefin oxidation by cytochrome P-450: evidence for group migration in catalytic intermediates formed with vinylidene chloride and trans-1-phenyl-1-butene. Biochemistry, 1983, 22, 5482-5489.	1.2	122
51	Antioxidant Reactions of Carotenoids. Annals of the New York Academy of Sciences, 1993, 691, 20-31.	1.8	122
52	Global, in situ, site-specific analysis of protein S-sulfenylation. Nature Protocols, 2015, 10, 1022-1037.	5.5	121
53	Determination of Singlet Oxygen-Specific versus Radical-Mediated Lipid Peroxidation in Photosensitized Oxidation of Lipid Bilayers:  Effect of β-Carotene and α-Tocopherol. Biochemistry, 1997, 36, 12911-12920.	1.2	118
54	Diagnostic Accuracy of MALDI Mass Spectrometric Analysis of Unfractionated Serum in Lung Cancer. Journal of Thoracic Oncology, 2007, 2, 893-901.	0.5	111

#	Article	IF	CITATIONS
55	Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction. Molecular and Cellular Proteomics, 2017, 16, 121-134.	2.5	111
56	Use of Dimedone-Based Chemical Probes for Sulfenic Acid Detection. Methods in Enzymology, 2010, 473, 95-115.	0.4	110
57	Proteomics of lipid oxidation-induced oxidation of porcine and bovine oxymyoglobins. Proteomics, 2007, 7, 628-640.	1.3	109
58	Reversibility of Covalent Electrophileâ^'Protein Adducts and Chemical Toxicity. Chemical Research in Toxicology, 2008, 21, 2361-2369.	1.7	107
59	An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer. Molecular and Cellular Proteomics, 2016, 15, 1060-1071.	2.5	104
60	Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles. Journal of the American Chemical Society, 2017, 139, 5588-5595.	6.6	104
61	Statistical Design for Biospecimen Cohort Size in Proteomics-based Biomarker Discovery and Verification Studies. Journal of Proteome Research, 2013, 12, 5383-5394.	1.8	103
62	Photoprotective Actions of Natural and Synthetic Melanins. Chemical Research in Toxicology, 1998, 11, 1434-1440.	1.7	102
63	Inhibition of UVB induced DNA photodamage in mouse epidermis by topically applied alpha-tocopherol. Carcinogenesis, 1997, 18, 1617-1622.	1.3	101
64	The development of selected reaction monitoring methods for targeted proteomics via empirical refinement. Proteomics, 2012, 12, 1134-1141.	1.3	101
65	Design, Implementation and Multisite Evaluation of a System Suitability Protocol for the Quantitative Assessment of Instrument Performance in Liquid Chromatography-Multiple Reaction Monitoring-MS (LC-MRM-MS). Molecular and Cellular Proteomics, 2013, 12, 2623-2639.	2.5	100
66	P-Mod:Â An Algorithm and Software To Map Modifications To Peptide Sequences Using Tandem MS Data. Journal of Proteome Research, 2005, 4, 358-368.	1.8	98
67	Methods for Peptide and Protein Quantitation by Liquid Chromatography-Multiple Reaction Monitoring Mass Spectrometry. Molecular and Cellular Proteomics, 2011, 10, M110.006593.	2.5	98
68	Comparative Shotgun Proteomics Using Spectral Count Data and Quasi-Likelihood Modeling. Journal of Proteome Research, 2010, 9, 4295-4305.	1.8	93
69	Vitamin E Oxidation in Human Atherosclerotic Lesions. Circulation Research, 2002, 90, 333-339.	2.0	91
70	Protein Targets of Reactive Electrophiles in Human Liver Microsomes. Chemical Research in Toxicology, 2007, 20, 859-867.	1.7	91
71	Prevention of DNA photodamage by vitamin E compounds and sunscreens: Roles of ultraviolet absorbance and cellular uptake. , 1999, 24, 169-176.		89
72	SALSA:Â A Pattern Recognition Algorithm To Detect Electrophile-Adducted Peptides by Automated Evaluation of CID Spectra in L Câ^'MSâ^'MS Analyses, Analytical Chemistry, 2001, 73, 1676-1683	3.2	86

#	Article	IF	CITATIONS
73	Proteomic identification of ubiquitinated proteins from human cells expressing His-tagged ubiquitin. Proteomics, 2005, 5, 2104-2111.	1.3	86
74	Evaluation of Strong Cation Exchange versus Isoelectric Focusing of Peptides for Multidimensional Liquid Chromatography-Tandem Mass Spectrometry. Journal of Proteome Research, 2008, 7, 5286-5294.	1.8	86
75	A Bioinformatics Workflow for Variant Peptide Detection in Shotgun Proteomics. Molecular and Cellular Proteomics, 2011, 10, M110.006536.	2.5	86
76	Reactions of β-Carotene with Cigarette Smoke Oxidants. Identification of Carotenoid Oxidation Products and Evaluation of the Prooxidant/Antioxidant Effect. Chemical Research in Toxicology, 1999, 12, 535-543.	1.7	85
77	An Azido-Biotin Reagent for Use in the Isolation of Protein Adducts of Lipid-derived Electrophiles by Streptavidin Catch and Photorelease. Molecular and Cellular Proteomics, 2009, 8, 2080-2089.	2.5	85
78	Quantitative Analysis of Modified Proteins by LCâ^'MS/MS of Peptides Labeled with Phenyl Isocyanate. Journal of Proteome Research, 2003, 2, 265-272.	1.8	84
79	Co-expression network analysis identifies Spleen Tyrosine Kinase (SYK) as a candidate oncogenic driver in a subset of small-cell lung cancer. BMC Systems Biology, 2013, 7, S1.	3.0	83
80	Quantitative Chemoproteomics for Site-Specific Analysis of Protein Alkylation by 4-Hydroxy-2-Nonenal in Cells. Analytical Chemistry, 2015, 87, 2535-2541.	3.2	83
81	Integrated Proteomic and Glycoproteomic Characterization of Human High-Grade Serous Ovarian Carcinoma. Cell Reports, 2020, 33, 108276.	2.9	83
82	Fibrinogen β-Chain Tyrosine Nitration Is a Prothrombotic Risk Factor. Journal of Biological Chemistry, 2008, 283, 33846-33853.	1.6	81
83	Oxidation of vitamin E during iron-catalyzed lipid peroxidation: evidence for electron-transfer reactions of the tocopheroxyl radical. Biochemistry, 1992, 31, 8278-8284.	1.2	79
84	Oncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer. Molecular and Cellular Proteomics, 2016, 15, 2924-2938.	2.5	79
85	Mitochondrial Protein Targets of Thiol-Reactive Electrophiles. Chemical Research in Toxicology, 2008, 21, 796-804.	1.7	78
86	Quantitative Analysis by Liquid Chromatography–Tandem Mass Spectrometry of Deuterium-Labeled and Unlabeled Vitamin E in Biological Samples. Analytical Biochemistry, 2001, 289, 89-95.	1.1	76
87	Covalent Adduction of Human Serum Albumin by 4-Hydroxy-2-Nonenal: Kinetic Analysis of Competing Alkylation Reactions. Biochemistry, 2006, 45, 10521-10528.	1.2	75
88	Detection of Proteome Diversity Resulted from Alternative Splicing is Limited by Trypsin Cleavage Specificity. Molecular and Cellular Proteomics, 2018, 17, 422-430.	2.5	75
89	Reactions of Peroxynitrite with \hat{I}^3 -Tocopherol. Chemical Research in Toxicology, 1997, 10, 401-407.	1.7	74
90	Antioxidant Actions of Î ² -Carotene in Liposomal and Microsomal Membranes: Role of Carotenoid-Membrane Incorporation and α-Tocopherol. Archives of Biochemistry and Biophysics, 1997, 338, 244-250.	1.4	74

#	Article	IF	CITATIONS
91	Redox Instability Induced by 4-Hydroxy-2-nonenal in Porcine and Bovine Myoglobins at pH 5.6 and 4 °C. Journal of Agricultural and Food Chemistry, 2006, 54, 3402-3408.	2.4	73
92	Spin filter–based sample preparation for shotgun proteomics. Nature Methods, 2009, 6, 785-785.	9.0	73
93	Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems. Molecular and Cellular Proteomics, 2014, 13, 849-859.	2.5	73
94	Proteomic approaches to characterize protein modifications: new tools to study the effects of environmental exposures Environmental Health Perspectives, 2002, 110, 3-9.	2.8	71
95	Proteomic Analysis of DNAâ^'Protein Cross-Linking by Antitumor Nitrogen Mustards. Chemical Research in Toxicology, 2009, 22, 1151-1162.	1.7	71
96	In-depth Proteomic Analysis of Nonsmall Cell Lung Cancer to Discover Molecular Targets and Candidate Biomarkers. Molecular and Cellular Proteomics, 2012, 11, 916-932.	2.5	71
97	PHOTOPROTECTIVE ACTIONS OF TOPICALLY APPLIED VITAMIN E*. Drug Metabolism Reviews, 2000, 32, 413-420.	1.5	67
98	Attenuation of the beta-catenin/TCF4 complex in colorectal cancer cells induces several growth-suppressive microRNAs that target cancer promoting genes. Oncogene, 2012, 31, 2750-2760.	2.6	66
99	Label-Free Quantitation of Protein Modifications by Pseudo Selected Reaction Monitoring with Internal Reference Peptides. Journal of Proteome Research, 2012, 11, 3467-3479.	1.8	66
100	Vitamin E Oxidation in Rat Liver Mitochondria. Biochemistry, 1995, 34, 5754-5761.	1.2	64
101	Peptide Sequence Motif Analysis of Tandem MS Data with the SALSA Algorithm. Analytical Chemistry, 2002, 74, 203-210.	3.2	64
102	Protein-Based Multiplex Assays: Mock Presubmissions to the US Food and Drug Administration. Clinical Chemistry, 2010, 56, 165-171.	1.5	64
103	Redox cycles of vitamin E: hydrolysis and ascorbic acid dependent reduction of 8a-(alkyldioxy)tocopherones. Biochemistry, 1989, 28, 9772-9777.	1.2	62
104	β-Carotene: Friend or Foe?,. Fundamental and Applied Toxicology, 1997, 40, 163-174.	1.9	62
105	Comparison of Protein Immunoprecipitation-Multiple Reaction Monitoring with ELISA for Assay of Biomarker Candidates in Plasma. Journal of Proteome Research, 2013, 12, 5996-6003.	1.8	62
106	Systematic and Quantitative Assessment of Hydrogen Peroxide Reactivity With Cysteines Across Human Proteomes. Molecular and Cellular Proteomics, 2017, 16, 1815-1828.	2.5	61
107	Porcine oxymyoglobin and lipid oxidation in vitro. Meat Science, 2003, 63, 241-247.	2.7	60
108	DNAâ^'Protein Cross-Linking by 1,2,3,4-Diepoxybutane. Journal of Proteome Research, 2010, 9, 4356-4367.	1.8	60

#	Article	IF	CITATIONS
109	Mechanisms of dimer and trimer formation from ultraviolet-irradiated α-tocopherol. Lipids, 2001, 36, 49-55.	0.7	59
110	Networkâ€assisted protein identification and data interpretation in shotgun proteomics. Molecular Systems Biology, 2009, 5, 303.	3.2	59
111	Analytical Validation of Protein-Based Multiplex Assays: A Workshop Report by the NCI-FDA Interagency Oncology Task Force on Molecular Diagnostics. Clinical Chemistry, 2010, 56, 237-243.	1.5	59
112	Global Stability of Plasma Proteomes for Mass Spectrometry-Based Analyses. Molecular and Cellular Proteomics, 2012, 11, M111.014340.	2.5	59
113	Identification of Proteins Adducted by Lipid Peroxidation Products in Plasma and Modifications of Apolipoprotein A1 with a Novel Biotinylated Phospholipid Probe. Journal of Proteome Research, 2008, 7, 4237-4246.	1.8	58
114	Quantitative Mass Spectrometry Analysis of PD-L1 Protein Expression, N-glycosylation and Expression Stoichiometry with PD-1 and PD-L2 in Human Melanoma. Molecular and Cellular Proteomics, 2017, 16, 1705-1717.	2.5	56
115	Increased Protein Nitration Burden in the Atherosclerotic Lesions and Plasma of Apolipoprotein A-l–Deficient Mice. Circulation Research, 2007, 101, 368-376.	2.0	55
116	Efficacy of Cetuximab in the Treatment of Ménétrier's Disease. Science Translational Medicine, 2009, 1, 8ra18.	5.8	55
117	Colorectal Cancer Cell Line Proteomes Are Representative of Primary Tumors and Predict Drug Sensitivity. Gastroenterology, 2017, 153, 1082-1095.	0.6	55
118	Precision of Multiple Reaction Monitoring Mass Spectrometry Analysis of Formalin-Fixed, Paraffin-Embedded Tissue. Journal of Proteome Research, 2012, 11, 3498-3505.	1.8	54
119	Quantitative measurement of HER2 expression to subclassify ERBB2 unamplified breast cancer. Laboratory Investigation, 2022, 102, 1101-1108.	1.7	53
120	Safety Assessment of Cyclomethicone, Cyclotetrasiloxane, Cyclopentasiloxane, Cyclohexasiloxane, and Cycloheptasiloxane. International Journal of Toxicology, 2011, 30, 149S-227S.	0.6	52
121	Peroxyl radical trapping and autoxidation reactions of .alphatocopherol in lipid bilayers. Chemical Research in Toxicology, 1991, 4, 89-93.	1.7	51
122	Mechlorethamine-Induced DNA–Protein Cross-Linking in Human Fibrosarcoma (HT1080) Cells. Journal of Proteome Research, 2011, 10, 2785-2796.	1.8	51
123	QuaMeter: Multivendor Performance Metrics for LC–MS/MS Proteomics Instrumentation. Analytical Chemistry, 2012, 84, 5845-5850.	3.2	50
124	Final Amended Safety Assessment of Hydroquinone as Used in Cosmetics. International Journal of Toxicology, 2010, 29, 274S-287S.	0.6	49
125	Proteomic analysis of oropharyngeal carcinomas reveals novel HPVâ€associated biological pathways. International Journal of Cancer, 2013, 132, 568-579.	2.3	47
126	Proteogenomic Analysis Reveals Unanticipated Adaptations of Colorectal Tumor Cells to Deficiencies in DNA Mismatch Repair. Cancer Research, 2014, 74, 387-397.	0.4	46

#	Article	IF	CITATIONS
127	Safety Assessment of <i>Vitis vinifera</i> (Grape)-Derived Ingredients as Used in Cosmetics. International Journal of Toxicology, 2014, 33, 48S-83S.	0.6	45
128	Activating PIK3CA Mutations Induce an Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-regulated Kinase (ERK) Paracrine Signaling Axis in Basal-like Breast Cancer*. Molecular and Cellular Proteomics, 2015, 14, 1959-1976.	2.5	44
129	Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts. Journal of Proteome Research, 2016, 15, 691-706.	1.8	44
130	UVB Induced Photooxidation of Vitamin E. Chemical Research in Toxicology, 1997, 10, 219-224.	1.7	43
131	Antioxidant Reactions of Vitamin E in the Perfused Rat Liver: Product Distribution and Effect of Dietary Vitamin E Supplementation. Archives of Biochemistry and Biophysics, 1997, 339, 157-164.	1.4	43
132	Proteomic Profiling of Paraffin-Embedded Samples Identifies Metaplasia-Specific and Early-Stage Gastric Cancer Biomarkers. American Journal of Pathology, 2012, 181, 1560-1572.	1.9	42
133	Phosphotyrosine Signaling Analysis in Human Tumors Is Confounded by Systemic Ischemia-Driven Artifacts and Intra-Specimen Heterogeneity. Cancer Research, 2015, 75, 1495-1503.	0.4	42
134	Identification of Proteomic Features To Distinguish Benign Pulmonary Nodules from Lung Adenocarcinoma. Journal of Proteome Research, 2017, 16, 3266-3276.	1.8	40
135	Antioxidant stoichiometry and the oxidative fate of vitamin E in peroxyl radical scavenging reactions. Lipids, 1995, 30, 789-793.	0.7	39
136	Safety Assessment of Talc as Used in Cosmetics. International Journal of Toxicology, 2015, 34, 66S-129S.	0.6	39
137	Quantitative Profiling of Protein Tyrosine Kinases in Human Cancer Cell Lines by Multiplexed Parallel Reaction Monitoring Assays. Molecular and Cellular Proteomics, 2016, 15, 682-691.	2.5	39
138	Sequence Mapping of Epoxide Adducts in Human Hemoglobin with LCâ^'Tandem MS and the Salsa Algorithm. Chemical Research in Toxicology, 2002, 15, 799-805.	1.7	38
139	Final Report of the Cosmetic Ingredient Review Expert Panel Amended Safety Assessment of Calendula officinalis—Derived Cosmetic Ingredients. International Journal of Toxicology, 2010, 29, 221S-243S.	0.6	38
140	Protein-Selective Capture to Analyze Electrophile Adduction of Hsp90 by 4-Hydroxynonenal. Chemical Research in Toxicology, 2011, 24, 1275-1282.	1.7	38
141	Supporting tool suite for production proteomics. Bioinformatics, 2011, 27, 3214-3215.	1.8	38
142	Proteomic Characterization of Metabolites, Protein Adducts, and Biliary Proteins in Rats Exposed to 1,1-Dichloroethylene or Diclofenac. Chemical Research in Toxicology, 2003, 16, 1306-1317.	1.7	36
143	Safety Assessment of Microbial Polysaccharide Gums as Used in Cosmetics. International Journal of Toxicology, 2016, 35, 5S-49S.	0.6	36
144	Reactions of Genistein with Alkylperoxyl Radicals. Chemical Research in Toxicology, 2000, 13, 638-645.	1.7	35

#	Article	IF	CITATIONS
145	The Poisons Within:  Application of Toxicity Mechanisms to Fundamental Disease Processes. Chemical Research in Toxicology, 2006, 19, 610-613.	1.7	35
146	Safety Assessment of Plant-Derived Fatty Acid Oils. International Journal of Toxicology, 2017, 36, 51S-129S.	0.6	35
147	Characterization of Benzoquinoneâ^Peptide Adducts by Electrospray Mass Spectrometry. Chemical Research in Toxicology, 2000, 13, 976-982.	1.7	34
148	GeLC-MRM Quantitation of Mutant KRAS Oncoprotein in Complex Biological Samples. Journal of Proteome Research, 2012, 11, 3908-3913.	1.8	33
149	Proteomic Consequences of a Single Gene Mutation in a Colorectal Cancer Model. Journal of Proteome Research, 2012, 11, 1184-1195.	1.8	33
150	New Guidelines for Publication of Manuscripts Describing Development and Application of Targeted Mass Spectrometry Measurements of Peptides and Proteins. Molecular and Cellular Proteomics, 2017, 16, 327-328.	2.5	33
151	Using the CPTAC Assay Portal to Identify and Implement Highly Characterized Targeted Proteomics Assays. Methods in Molecular Biology, 2016, 1410, 223-236.	0.4	33
152	Phospholipidâ^'Protein Adducts of Lipid Peroxidation:  Synthesis and Study of New Biotinylated Phosphatidylcholines. Chemical Research in Toxicology, 2007, 20, 227-234.	1.7	31
153	Neuronal Preconditioning Requires the Mitophagic Activity of C-terminus of HSC70-Interacting Protein. Journal of Neuroscience, 2018, 38, 6825-6840.	1.7	31
154	Mass Spectral Characterization of Dichloroacetic Acid-Modified Human Glutathione Transferase Zeta. Chemical Research in Toxicology, 2002, 15, 1387-1397.	1.7	30
155	Selectively increased oxidative modifications mapped to detergentâ€insoluble forms of Aβ and βâ€III tubulin in Alzheimer's disease. FASEB Journal, 2006, 20, 1473-1483.	0.2	29
156	Assembly Dynamics and Stoichiometry of the Apoptosis Signal-regulating Kinase (ASK) Signalosome in Response to Electrophile Stress. Molecular and Cellular Proteomics, 2016, 15, 1947-1961.	2.5	29
157	The airway epithelium undergoes metabolic reprogramming in individuals at high risk for lung cancer. JCI Insight, 2016, 1, e88814.	2.3	29
158	Alkylation of Cytochromecby (Glutathion-S-yl)-1,4-benzoquinone and Iodoacetamide Demonstrates Compound-Dependent Site Specificity. Chemical Research in Toxicology, 2005, 18, 41-50.	1.7	28
159	Inhibition of Protein Phosphatase 2A Activity by Selective Electrophile Alkylation Damageâ€. Biochemistry, 2006, 45, 10020-10029.	1.2	28
160	N-Terminal amino acid side-chain cleavage of chemically modified peptides in the gas phase: A mass spectrometry technique for N-terminus identification. Bioorganic and Medicinal Chemistry, 2006, 14, 6213-6222.	1.4	28
161	Relating protein adduction to gene expression changes: a systems approach. Molecular BioSystems, 2011, 7, 2118.	2.9	28
162	Antioxidant reactions of α-tocopherolhydroquinone. Lipids, 2000, 35, 1045-1047.	0.7	27

#	Article	IF	CITATIONS
163	Integrative Omics Analysis Reveals the Importance and Scope of Translational Repression in microRNA-mediated Regulation. Molecular and Cellular Proteomics, 2013, 12, 1900-1911.	2.5	26
164	Safety Assessment of Boron Nitride as Used in Cosmetics. International Journal of Toxicology, 2015, 34, 53S-60S.	0.6	26
165	Chemoproteomics Reveals Chemical Diversity and Dynamics of 4-Oxo-2-nonenal Modifications in Cells. Molecular and Cellular Proteomics, 2017, 16, 1789-1800.	2.5	26
166	Alkylation and Inactivation of Human Glutathione Transferase Zeta (hGSTZ1-1) by Maleylacetone and Fumarylacetone. Chemical Research in Toxicology, 2002, 15, 707-716.	1.7	25
167	Cysteinyl Peptide Capture for Shotgun Proteomics: Global Assessment of Chemoselective Fractionation. Journal of Proteome Research, 2010, 9, 5461-5472.	1.8	25
168	Sequence Tagging Reveals Unexpected Modifications in Toxicoproteomics. Chemical Research in Toxicology, 2011, 24, 204-216.	1.7	25
169	Final Report of the Cosmetic Ingredient Review Expert Panel on the Safety Assessment of Dicarboxylic Acids, Salts, and Esters. International Journal of Toxicology, 2012, 31, 5S-76S.	0.6	25
170	CHIP Is an Essential Determinant of Neuronal Mitochondrial Stress Signaling. Antioxidants and Redox Signaling, 2015, 23, 535-549.	2.5	25
171	proBAMsuite, a Bioinformatics Framework for Genome-Based Representation and Analysis of Proteomics Data. Molecular and Cellular Proteomics, 2016, 15, 1164-1175.	2.5	25
172	S-(2-Chloroacetyl)glutathione, a reactive glutathione thiol ester and a putative metabolite of 1,1-dichloroethylene. Biochemistry, 1988, 27, 3652-3657.	1.2	24
173	Safety Assessment of <i>Rosmarinus officinalis</i> (Rosemary)-Derived Ingredients as Used in Cosmetics. International Journal of Toxicology, 2018, 37, 12S-50S.	0.6	24
174	Safety Assessment of Tocopherols and Tocotrienols as Used in Cosmetics. International Journal of Toxicology, 2018, 37, 61S-94S.	0.6	24
175	Final Report of the Cosmetic Ingredient Review Expert Panel Safety Assessment of Polymethyl Methacrylate (PMMA), Methyl Methacrylate Crosspolymer, and Methyl Methacrylate/Glycol Dimethacrylate Crosspolymer. International Journal of Toxicology, 2011, 30, 54S-65S.	0.6	23
176	Safety Assessment of Alkyl Esters as Used in Cosmetics. International Journal of Toxicology, 2015, 34, 5S-69S.	0.6	23
177	Specificity of Protein Covalent Modification by the Electrophilic Proteasome Inhibitor Carfilzomib in Human Cells. Molecular and Cellular Proteomics, 2016, 15, 3233-3242.	2.5	23
178	Proteomic analysis of colon and rectal carcinoma using standard and customized databases. Scientific Data, 2015, 2, 150022.	2.4	22
179	A Rapid Method for Profiling the Products of Antioxidant Reactions by Negative Ion Chemical Ionization Mass Spectrometry. Chemical Research in Toxicology, 1995, 8, 128-135.	1.7	21
180	Effects of UV light and tumor promoters on endogenous vitamin E status in mouse skin. Carcinogenesis, 2000, 21, 221-225.	1.3	20

#	Article	IF	CITATIONS
181	Safety Assessment of Trimoniums as Used in Cosmetics. International Journal of Toxicology, 2012, 31, 296S-341S.	0.6	20
182	Identification of Protein Fragments as Pattern Features in MALDIâ^'MS Analyses of Serum. Journal of Proteome Research, 2005, 4, 1672-1680.	1.8	19
183	[27] Tocopherone and epoxytocopherone products of vitamin E oxidation. Methods in Enzymology, 1994, 234, 310-316.	0.4	18
184	Effect of UVB on Hydrolysis of α-Tocopherol Acetate to α-Tocopherol in Mouse Skin. Journal of Investigative Dermatology, 1998, 111, 302-307.	0.3	18
185	Protein Expression Signatures for Inhibition of Epidermal Growth Factor Receptor-mediated Signaling. Molecular and Cellular Proteomics, 2012, 11, M111.015222.	2.5	18
186	Biotinylated Probes for the Analysis of Protein Modification by Electrophiles. Methods in Molecular Biology, 2012, 803, 77-95.	0.4	18
187	Reactions of the vitamin E model compound 2,2,5,7,8-pentamethylchroman-6-ol with peroxyl radicals. Chemical Research in Toxicology, 1993, 6, 351-355.	1.7	17
188	[28] Gas chromatography-mass spectrometry analysis of vitamin E and its oxidation products. Methods in Enzymology, 1999, 299, 309-318.	0.4	17
189	Identification of phosphorylation sites in glycine N-methyltransferase from rat liver. Protein Science, 2006, 15, 785-794.	3.1	17
190	Proteomics: Clinical applications for head and neck squamous cell carcinoma. Head and Neck, 2006, 28, 549-558.	0.9	17
191	Efficient Microscale Basic Reverse Phase Peptide Fractionation for Global and Targeted Proteomics. Journal of Proteome Research, 2016, 15, 2346-2354.	1.8	17
192	Proteogenomic Analysis of Surgically Resected Lung Adenocarcinoma. Journal of Thoracic Oncology, 2018, 13, 1519-1529.	0.5	17
193	Analysis of Immune Checkpoint Drug Targets and Tumor Proteotypes in Non-Small Cell Lung Cancer. Scientific Reports, 2020, 10, 9805.	1.6	17
194	Accelerated instability testing reveals quantitative mass spectrometry overcomes specimen storage limitations associated with PD-L1 immunohistochemistry. Laboratory Investigation, 2020, 100, 874-886.	1.7	17
195	Formation and identification of protein adducts to cytosolic proteins in guinea pig liver slices exposed to halothane. Toxicology, 1992, 73, 281-295.	2.0	16
196	UV-B-Induced Photooxidation of Vitamin E in Mouse Skin. Chemical Research in Toxicology, 1999, 12, 187-191.	1.7	16
197	Final Report of the Cosmetic Ingredient Review Expert Panel on the Safety Assessment of Pelargonic Acid (Nonanoic Acid) and Nonanoate Esters. International Journal of Toxicology, 2011, 30, 228S-269S.	0.6	15
198	Safety Assessment of Alkyl Benzoates as Used in Cosmetics. International Journal of Toxicology, 2012, 31, 342S-372S.	0.6	15

#	Article	IF	CITATIONS
199	Final Report of the Cosmetic Ingredient Review Expert Panel on the Safety Assessment of Methyl Acetate. International Journal of Toxicology, 2012, 31, 112S-136S.	0.6	15
200	Phenotype-Driven Plasma Biobanking Strategies and Methods. Journal of Personalized Medicine, 2015, 5, 140-152.	1.1	15
201	Safety Assessment of Galactomannans as Used in Cosmetics. International Journal of Toxicology, 2015, 34, 35S-65S.	0.6	15
202	Safety Assessment of Diethanolamine and Its Salts as Used in Cosmetics. International Journal of Toxicology, 2017, 36, 89S-110S.	0.6	15
203	Antioxidant Chemistry of α-Tocopherol in Biological Systems. Sub-Cellular Biochemistry, 1998, 30, 301-317.	1.0	15
204	Analysis of protein adduction kinetics by quantitative mass spectrometry. Chemico-Biological Interactions, 2007, 168, 117-127.	1.7	14
205	Amended Safety Assessment of Dodecylbenzenesulfonate, Decylbenzenesulfonate, and Tridecylbenzenesulfonate Salts as Used in Cosmetics. International Journal of Toxicology, 2010, 29, 288S-305S.	0.6	13
206	[45] Epoxide products of \hat{I}^2 -carotene antioxidant reactions. Methods in Enzymology, 1992, 213, 472-479.	0.4	12
207	Reactions of vitamin E and its model compound 2,2,5,7,8-pentamethylchroman-6-ol with ozone. Chemical Research in Toxicology, 1993, 6, 69-74.	1.7	12
208	Tandem MS Analysis of Model Peptide Adducts from Reactive Metabolites of the Hepatotoxin 1,1-Dichloroethylene. Chemical Research in Toxicology, 2000, 13, 1302-1312.	1.7	12
209	A reporter system for translational readthrough of stop codons in human cells. FEBS Open Bio, 2012, 2, 56-59.	1.0	11
210	Safety Assessment of PEGylated Oils as Used in Cosmetics. International Journal of Toxicology, 2014, 33, 13S-39S.	0.6	11
211	Safety Assessment of Isoparaffins as Used in Cosmetics. International Journal of Toxicology, 2012, 31, 269S-295S.	0.6	10
212	RNA-seq data analysis at the gene and CDS levels provides a comprehensive view of transcriptome responses induced by 4-hydroxynonenal. Molecular BioSystems, 2013, 9, 3036.	2.9	10
213	Dynamic Phosphorylation of Apoptosis Signal Regulating Kinase 1 (ASK1) in Response to Oxidative and Electrophilic Stress. Chemical Research in Toxicology, 2016, 29, 2175-2183.	1.7	10
214	Safety Assessment of PEGylated Alkyl Glycerides as Used in Cosmetics. International Journal of Toxicology, 2020, 39, 26S-58S.	0.6	10
215	Hepatic injury and lipid peroxidation during hemorrhagic shock and resuscitation. Life Sciences, 1993, 53, 1685-1690.	2.0	9
216	Mapping Protein Modifications With Liquid Chromatography-Mass Spectrometry And The Salsa Algorithm. Advances in Protein Chemistry, 2003, 65, 195-216.	4.4	9

#	Article	IF	CITATIONS
217	Amended Safety Assessment of <i>Hypericum Perforatum</i> -Derived Ingredients as Used in Cosmetics. International Journal of Toxicology, 2014, 33, 5S-23S.	0.6	9
218	Final Safety Assessment of Thiodipropionic Acid and Its Dialkyl Esters as Used in Cosmetics. International Journal of Toxicology, 2010, 29, 137S-150S.	0.6	8
219	Safety Assessment of Diethanolamides as Used in Cosmetics. International Journal of Toxicology, 2013, 32, 36S-58S.	0.6	8
220	Electron capture negative chemical ionization mass spectrometry and tandem mass spectrometry analysis of l²-carotene, l̂±-tocopherol and their oxidation products. Journal of Mass Spectrometry, 1995, 30, 1480-1488.	0.7	6
221	Amended Safety Assessment of Sesamum Indicum (Sesame) Seed Oil, Hydrogenated Sesame Seed Oil, Sesamum Indicum (Sesame) Oil Unsaponifiables, and Sodium Sesameseedate. International Journal of Toxicology, 2011, 30, 40S-53S.	0.6	6
222	Analysis of Protein Targets by Oxidative Stress Using the OxyBlot and Biotin–Avidin-Capture Methodology. Neuromethods, 2011, , 365-381.	0.2	6
223	Painting a Moving Picture: Large-Scale Proteomics Efforts and Their Potential for Changing Patient Care. Clinical Chemistry, 2011, 57, 1357-1360.	1.5	6
224	Safety Assessment of Modified Terephthalate Polymers as Used in Cosmetics. International Journal of Toxicology, 2014, 33, 36S-47S.	0.6	6
225	Safety Assessment of Animal- and Plant-Derived Amino Acids as Used in Cosmetics. International Journal of Toxicology, 2014, 33, 5S-12S.	0.6	6
226	Safety Assessment of Panax spp Root-Derived Ingredients as Used in Cosmetics. International Journal of Toxicology, 2015, 34, 5S-42S.	0.6	6
227	Safety Assessment of <i>Achillea millefolium</i> as Used in Cosmetics. International Journal of Toxicology, 2016, 35, 5S-15S.	0.6	6
228	Antioxidant Reactions of Green Tea Catechins and Soy Isoflavones. Advances in Experimental Medicine and Biology, 2001, 500, 191-197.	0.8	6
229	β-Carotene: Friend or Foe?. Toxicological Sciences, 1997, 40, 163-174.	1.4	5
230	Safety Assessment of Nylon as Used in Cosmetics. International Journal of Toxicology, 2014, 33, 47S-60S.	0.6	5
231	Safety Assessment of <i>Cucumis sativus</i> (Cucumber)-Derived Ingredients as Used in Cosmetics. International Journal of Toxicology, 2014, 33, 47S-64S.	0.6	5
232	Safety Assessment of Synthetic Fluorphlogopite as Used in Cosmetics. International Journal of Toxicology, 2015, 34, 43S-52S.	0.6	5
233	Safety Assessment of Cross-Linked Alkyl Acrylates as Used in Cosmetics. International Journal of Toxicology, 2017, 36, 59S-88S.	0.6	5
234	Safety Assessment of <i>Avena sativa</i> (Oat)-Derived Ingredients As Used in Cosmetics. International Journal of Toxicology, 2019, 38, 23S-47S.	0.6	5

#	Article	IF	CITATIONS
235	Reactive oxidants from nitric oxide, oxidants and cellular signalling, and repair of oxidative DNA damage: A chemical pathology study section workshop. Molecular Carcinogenesis, 1998, 22, 209-220.	1.3	4
236	Targeted Protein Capture for Analysis of Electrophile-Protein Adducts. Methods in Molecular Biology, 2013, 987, 163-176.	0.4	3
237	Safety Assessment of Tin(IV) Oxide as Used in Cosmetics. International Journal of Toxicology, 2014, 33, 40S-46S.	0.6	3
238	Quantitative profiling of protein tyrosine kinases in human cancer cell lines by multiplexed parallel reaction monitoring assays. Molecular and Cellular Proteomics, 0, , mcp.O115.051813.	2.5	3
239	Safety Assessment of Alkyl Ethylhexanoates as Used in Cosmetics. International Journal of Toxicology, 2015, 34, 61S-73S.	0.6	2
240	Safety Assessment of Ethanolamides as Used in Cosmetics. International Journal of Toxicology, 2015, 34, 18S-34S.	0.6	2
241	Proteomic characterisations of ulcerative colitis endoscopic biopsies associate with clinically relevant histological measurements of disease severity. Journal of Clinical Pathology, 2022, 75, 636-642.	1.0	2
242	[49] Products from reaction of peroxynitrite with Î ³ -tocopherol. Methods in Enzymology, 1999, 301, 483-490.	0.4	1
243	[49] Reactions of vitamin E with ozone. Methods in Enzymology, 2000, 319, 546-551.	0.4	1
244	Analytical Proteomics Approaches to Analysis of Protein Modifications: Tools for Studying Proteome-Environment Interactions. , 2005, , 283-297.		1
245	Chapter 3 Site-Specific Modification of the Electrophile Sensor Protein Keap1 and Activation of Nrf2-Dependent Gene Expression. Advances in Molecular Toxicology, 2006, 1, 65-83.	0.4	1
246	Safety Assessment of Xylene Sulfonic Acid, Toluene Sulfonic Acid, and Alkyl Aryl Sulfonate Hydrotropes as Used in Cosmetics. International Journal of Toxicology, 2011, 30, 270S-283S.	0.6	1
247	Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates. Genomics, Proteomics and Bioinformatics, 2013, 11, 86-95.	3.0	1
248	Safety Assessment of Dialkyl Malates as Used in Cosmetics. International Journal of Toxicology, 2015, 34, 5S-17S.	0.6	1
249	Bioinformatics Tools for Proteomics. , 2006, , 289-307.		0
250	Safety Assessment of 6-Hydroxyindole as Used in Cosmetics. International Journal of Toxicology, 2014, 33, 24S-35S.	0.6	0
251	Carotenoid Antioxidant Chemistry. , 1997, , 556-561.		0
252	Safety Assessment of Ethers and Esters of Ascorbic Acid as Used in Cosmetics. International Journal of Toxicology, 2022, , 109158182210935.	0.6	0