Darryl G Thelen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6163237/publications.pdf Version: 2024-02-01

		53794	30087
124	11,516	45	103
papers	citations	h-index	g-index
124	124	124	7157
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Shear wave tensiometry tracks reductions in collateral ligament tension due to incremental releases. Journal of Orthopaedic Research, 2023, 41, 524-533.	2.3	0
2	Sensitivity of the shear wave speed-stress relationship to soft tissue material properties and fiber alignment. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104964.	3.1	6
3	Influence of Articular Geometry and Tibial Tubercle Location on Patellofemoral Kinematics and Contact Mechanics. Journal of Applied Biomechanics, 2022, 38, 58-66.	0.8	4
4	Fusion of Wearable Kinetic and Kinematic Sensors to Estimate Triceps Surae Work during Outdoor Locomotion on Slopes. Sensors, 2022, 22, 1589.	3.8	9
5	A Kalman Filter Approach for Estimating Tendon Wave Speed from Skin-Mounted Accelerometers. Sensors, 2022, 22, 2283.	3.8	3
6	Atypical triceps surae force and work patterns underlying gait in children with cerebral palsy. Journal of Orthopaedic Research, 2022, 40, 2763-2770.	2.3	4
7	Individuals with Chronic Mild-to-Moderate Traumatic Brain Injury Exhibit Decreased Neuromuscular Complexity During Gait. Neurorehabilitation and Neural Repair, 2022, 36, 317-327.	2.9	6
8	Ultrashort echo time (UTE) imaging reveals a shift in bound water that is sensitive to sub-clinical tendinopathy in older adults. Skeletal Radiology, 2021, 50, 107-113.	2.0	12
9	Patella Apex Influences Patellar Ligament Forces and Ratio. Journal of Biomechanical Engineering, 2021, 143, .	1.3	2
10	Normative Achilles and patellar tendon shear wave speeds and loading patterns during walking in typically developing children. Gait and Posture, 2021, 88, 185-191.	1.4	4
11	Knee extension moment arm variations relate to mechanical function in walking and running. Journal of the Royal Society Interface, 2021, 18, 20210326.	3.4	6
12	Interfibrillar shear behavior is altered in aging tendon fascicles. Biomechanics and Modeling in Mechanobiology, 2020, 19, 841-849.	2.8	9
13	Anterior Cruciate Ligament Graft Tunnel Placement and Graft Angle Are Primary Determinants of Internal Knee Mechanics After Reconstructive Surgery. American Journal of Sports Medicine, 2020, 48, 3503-3514.	4.2	14
14	Achilles Tendon Morphology Is Related to Triceps Surae Muscle Size and Peak Plantarflexion Torques During Walking in Young but Not Older Adults. Frontiers in Sports and Active Living, 2020, 2, 88.	1.8	4
15	Wearable Tendon Kinetics. Sensors, 2020, 20, 4805.	3.8	17
16	Achilles tendon loading is lower in older adults than young adults across a broad range of walking speeds. Experimental Gerontology, 2020, 137, 110966.	2.8	15
17	Shear Wave Tensiometry Reveals an Age-Related Deficit in Triceps Surae Work at Slow and Fast Walking Speeds. Frontiers in Sports and Active Living, 2020, 2, 69.	1.8	12
18	Shear wave speeds track axial stress in porcine collateral ligaments. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 105, 103704.	3.1	7

#	Article	IF	CITATIONS
19	Calibration of the shear wave speed-stress relationship in in situ Achilles tendons using cadaveric simulations of gait and isometric contraction. Journal of Biomechanics, 2020, 106, 109799.	2.1	11
20	Ligament Shear Wave Speeds Are Sensitive to Tensiometer-Tissue Interactions: A Parametric Modeling Study. Lecture Notes in Computational Vision and Biomechanics, 2020, , 48-59.	0.5	1
21	Simulation of surface strain in tibiofemoral cartilage during walking for the prediction of collagen fibre orientation. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2019, 7, 396-405.	1.9	1
22	The effects of sub-threshold vibratory noise on visuomotor entrainment during human walking and standing in a virtual reality environment. Human Movement Science, 2019, 66, 587-599.	1.4	10
23	The influence of knee joint geometry and alignment on the tibiofemoral load distribution: A computational study. Knee, 2019, 26, 813-823.	1.6	27
24	Shear Wave Predictions of Achilles Tendon Loading during Human Walking. Scientific Reports, 2019, 9, 13419.	3.3	46
25	Patients With Medial Knee Osteoarthritis Reduce Medial Knee Contact Forces by Altering Trunk Kinematics, Progression Speed, and Stepping Strategy During Stair Ascent and Descent: A Pilot Study. Journal of Applied Biomechanics, 2019, 35, 280-289.	0.8	10
26	Calibration of the shear wave speed-stress relationship in ex vivo tendons. Journal of Biomechanics, 2019, 90, 9-15.	2.1	19
27	The effect of articular geometry features identified using statistical shape modelling on knee biomechanics. Medical Engineering and Physics, 2019, 66, 47-55.	1.7	33
28	Achilles tendon shear wave speed tracks the dynamic modulation of standing balance. Physiological Reports, 2019, 7, e14298.	1.7	4
29	The effects of cognitive load and optical flow on antagonist leg muscle coactivation during walking for young and older adults. Journal of Electromyography and Kinesiology, 2019, 44, 8-14.	1.7	14
30	Can altered neuromuscular coordination restore soft tissue loading patterns in anterior cruciate ligament and menisci deficient knees during walking?. Journal of Biomechanics, 2019, 82, 124-133.	2.1	32
31	Biplanar ultrasound investigation of in vivo Achilles tendon displacement non-uniformity. Translational Sports Medicine, 2019, 2, 73-81.	1.1	18
32	Relationship Between Lateral Patellar Stability and Tibial Tubercle Location for Varying Patellofemoral Geometries. Journal of Biomechanical Engineering, 2019, 141, .	1.3	4
33	Gauging force by tapping tendons. Nature Communications, 2018, 9, 1592.	12.8	130
34	Abnormal muscle activation patterns are associated with chronic gait deficits following traumatic brain injury. Gait and Posture, 2018, 62, 510-517.	1.4	10
35	Knee Joint Loading in Healthy Adults During Functional Exercises: Implications for Rehabilitation Guidelines. Journal of Orthopaedic and Sports Physical Therapy, 2018, 48, 162-173.	3.5	71
36	The coupled effects of crouch gait and patella alta on tibiofemoral and patellofemoral cartilage loading in children. Gait and Posture, 2018, 60, 181-187.	1.4	12

#	Article	IF	CITATIONS
37	Evidence of Generalized Muscle Stiffness in the Presence of Latent Trigger Points Within Infraspinatus. Archives of Physical Medicine and Rehabilitation, 2018, 99, 2257-2262.	0.9	13
38	Efficient computation of cartilage contact pressures within dynamic simulations of movement. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6, 491-498.	1.9	34
39	Nonuniform Deformation of the Patellar Tendon During Passive Knee Flexion. Journal of Applied Biomechanics, 2018, 34, 14-22.	0.8	12
40	Cartilage defect location and stiffness predispose the tibiofemoral joint to aberrant loading conditions during stance phase of gait. PLoS ONE, 2018, 13, e0205842.	2.5	14
41	Simulation of Soft Tissue Loading from Observed Movement Dynamics. , 2018, , 395-428.		0
42	American Society of Biomechanics Clinical Biomechanics Award 2017: Non-anatomic graft geometry is linked with asymmetric tibiofemoral kinematics and cartilage contact following anterior cruciate ligament reconstruction. Clinical Biomechanics, 2018, 56, 75-83.	1.2	16
43	How does patellar tendon advancement alter the knee extensor mechanism in children treated for crouch gait?. Gait and Posture, 2018, 64, 248-254.	1.4	18
44	Quantitative ultrasound mapping of regional variations in shear wave speeds of the aging Achilles tendon. European Radiology, 2017, 27, 474-482.	4.5	67
45	A 3D model of the Achilles tendon to determine the mechanisms underlying nonuniform tendon displacements. Journal of Biomechanics, 2017, 51, 17-25.	2.1	52
46	Effect of Loading on In Vivo Tibiofemoral and Patellofemoral Kinematics of Healthy and ACL-Reconstructed Knees. American Journal of Sports Medicine, 2017, 45, 3272-3279.	4.2	21
47	The effects of Achilles tendon compliance on triceps surae mechanics and energetics in walking. Journal of Biomechanics, 2017, 60, 227-231.	2.1	43
48	Variation in the human Achilles tendon moment arm during walking. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 201-205.	1.6	46
49	Age-Related Differences in Gait Kinematics, Kinetics, and Muscle Function: A Principal Component Analysis. Annals of Biomedical Engineering, 2017, 45, 695-710.	2.5	32
50	Visuomotor Entrainment and the Frequency-Dependent Response of Walking Balance to Perturbations. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1135-1142.	4.9	28
51	Influence of patellar position on the knee extensor mechanism in normal and crouched walking. Journal of Biomechanics, 2017, 51, 1-7.	2.1	42
52	Simulation of Soft Tissue Loading from Observed Movement Dynamics. , 2017, , 1-34.		4
53	Knee Cartilage Thickness, T1ϕand T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults. PLoS ONE, 2017, 12, e0170002.	2.5	46
54	Medial knee loading is altered in subjects with early osteoarthritis during gait but not during step-up-and-over task. PLoS ONE, 2017, 12, e0187583.	2.5	39

#	Article	IF	CITATIONS
55	Accuracy of model-based tracking of knee kinematics and cartilage contact measured by dynamic volumetric MRI. Medical Engineering and Physics, 2016, 38, 1131-1135.	1.7	15
56	American Society of Biomechanics Clinical Biomechanics Award 2015: MRI assessments of cartilage mechanics, morphology and composition following reconstruction of the anterior cruciate ligament. Clinical Biomechanics, 2016, 34, 38-44.	1.2	19
57	Imaging and simulation of Achilles tendon dynamics: Implications for walking performance in the elderly. Journal of Biomechanics, 2016, 49, 1403-1410.	2.1	46
58	Influence of Ligament Properties on Tibiofemoral Mechanics in Walking. Journal of Knee Surgery, 2016, 29, 099-106.	1.6	45
59	Comparison of hierarchical and six degrees-of-freedom marker sets in analyzing gait kinematics. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 199-207.	1.6	11
60	The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement. Journal of Biomechanical Engineering, 2016, 138, 021017.	1.3	85
61	Middle-aged adults exhibit altered spatial variations in Achilles tendon wave speed. Physiological Measurement, 2015, 36, 1485-1496.	2.1	23
62	Influence of step rate and quadriceps load distribution on patellofemoral cartilage contact pressures during running. Journal of Biomechanics, 2015, 48, 2871-2878.	2.1	44
63	Advanced age brings a greater reliance on visual feedback to maintain balance during walking. Human Movement Science, 2015, 40, 381-392.	1.4	88
64	InÂVivo Measures of Shear Wave Speed as a Predictor of Tendon Elasticity and Strength. Ultrasound in Medicine and Biology, 2015, 41, 2722-2730.	1.5	40
65	Gait variability in healthy old adults is more affected by a visual perturbation than by a cognitive or narrow step placement demand. Gait and Posture, 2015, 42, 380-385.	1.4	46
66	The accuracy of conventional 2D video for quantifying upper limb kinematics in repetitive motion occupational tasks. Ergonomics, 2015, 58, 2057-2066.	2.1	10
67	Achilles tendon displacement patterns during passive stretch and eccentric loading are altered in middle-aged adults. Medical Engineering and Physics, 2015, 37, 712-716.	1.7	54
68	Prediction and Validation of Load-Dependent Behavior of the Tibiofemoral and Patellofemoral Joints During Movement. Annals of Biomedical Engineering, 2015, 43, 2675-2685.	2.5	109
69	Depth-dependent variations in Achilles tendon deformations with age are associated with reduced plantarflexor performance during walking. Journal of Applied Physiology, 2015, 119, 242-249.	2.5	47
70	Non-uniform in vivo deformations of the human Achilles tendon during walking. Gait and Posture, 2015, 41, 192-197.	1.4	99
71	Ability of Sagittal Kinematic Variables to Estimate Ground Reaction Forces and Joint Kinetics in Running. Journal of Orthopaedic and Sports Physical Therapy, 2014, 44, 825-830.	3.5	84
72	Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking. Journal of Biomechanical Engineering, 2014, 136, 021033.	1.3	75

#	Article	IF	CITATIONS
73	Increasing Running Step Rate Reduces Patellofemoral Joint Forces. Medicine and Science in Sports and Exercise, 2014, 46, 557-564.	0.4	187
74	Empirical evaluation of gastrocnemius and soleus function during walking. Journal of Biomechanics, 2014, 47, 2969-2974.	2.1	27
75	Non-uniform displacements within the Achilles tendon observed during passive and eccentric loading. Journal of Biomechanics, 2014, 47, 2831-2835.	2.1	78
76	Hip Muscle Loads During Running at Various Step Rates. Journal of Orthopaedic and Sports Physical Therapy, 2014, 44, 766-A4.	3.5	59
77	Selective lateral muscle activation in moderate medial knee osteoarthritis subjects does not unload medial knee condyle. Journal of Biomechanics, 2014, 47, 1409-1415.	2.1	49
78	The use of 2D ultrasound elastography for measuring tendon motion and strain. Journal of Biomechanics, 2014, 47, 750-754.	2.1	54
79	Spatial variations in Achilles tendon shear wave speed. Journal of Biomechanics, 2014, 47, 2685-2692.	2.1	78
80	Measurement of tibiofemoral kinematics using highly accelerated 3D radial sampling. Magnetic Resonance in Medicine, 2013, 69, 1310-1316.	3.0	32
81	Empirical assessment of dynamic hamstring function during human walking. Journal of Biomechanics, 2013, 46, 1255-1261.	2.1	6
82	Load-dependent variations in knee kinematics measured with dynamic MRI. Journal of Biomechanics, 2013, 46, 2045-2052.	2.1	35
83	The modulation of forward propulsion, vertical support, and center of pressure by the plantarflexors during human walking. Gait and Posture, 2013, 38, 993-997.	1.4	74
84	Length and activation dependent variations in muscle shear wave speed. Physiological Measurement, 2013, 34, 713-721.	2.1	74
85	Hamstrings are most susceptible to injury during the late swing phase of sprinting. British Journal of Sports Medicine, 2012, 46, 90-90.	6.7	126
86	Tendon motion and strain patterns evaluated with two-dimensional ultrasound elastography. Journal of Biomechanics, 2012, 45, 2618-2623.	2.1	46
87	The influence of glove and hand position on pressure over the ulnar nerve during cycling. Clinical Biomechanics, 2011, 26, 642-648.	1.2	34
88	Influence of Bicycle Seat Tube Angle and Hand Position on Lower Extremity Kinematics and Neuromuscular Control: Implications for Triathlon Running Performance. Journal of Applied Biomechanics, 2011, 27, 297-305.	0.8	13
89	Hamstring Musculotendon Dynamics during Stance and Swing Phases of High-Speed Running. Medicine and Science in Sports and Exercise, 2011, 43, 525-532.	0.4	221
90	The influence of prior hamstring injury on lengthening muscle tissue mechanics. Journal of Biomechanics, 2010, 43, 2254-2260.	2.1	79

#	Article	IF	CITATIONS
91	Hamstring Strain Injuries: Recommendations for Diagnosis, Rehabilitation, and Injury Prevention. Journal of Orthopaedic and Sports Physical Therapy, 2010, 40, 67-81.	3.5	409
92	Effects of prior hamstring strain injury on strength, flexibility, and running mechanics. Clinical Biomechanics, 2010, 25, 681-686.	1.2	61
93	Computational techniques for using insole pressure sensors to analyse three-dimensional joint kinetics. Computer Methods in Biomechanics and Biomedical Engineering, 2010, 13, 505-514.	1.6	15
94	A Magnetic Resonance-Compatible Loading Device for Dynamically Imaging Shortening and Lengthening Muscle Contraction Mechanics. Journal of Medical Devices, Transactions of the ASME, 2009, 3, .	0.7	11
95	Effect of age on center of mass motion during human walking. Gait and Posture, 2009, 30, 217-222.	1.4	56
96	Differences in lower-extremity muscular activation during walking between healthy older and young adults. Journal of Electromyography and Kinesiology, 2009, 19, 1085-1091.	1.7	249
97	MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skeletal Radiology, 2008, 37, 1101-1109.	2.0	191
98	In vivo measurement of dynamic rectus femoris function at postures representative of early swing phase. Journal of Biomechanics, 2008, 41, 137-144.	2.1	20
99	Active and passive contributions to joint kinetics during walking in older adults. Journal of Biomechanics, 2008, 41, 1520-1527.	2.1	157
100	The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking. Gait and Posture, 2008, 27, 628-634.	1.4	106
101	Gender Differences in Bicycle Saddle Pressure Distribution during Seated Cycling. Medicine and Science in Sports and Exercise, 2008, 40, 1126-1134.	0.4	46
102	Influence of Gender, Power, and Hand Position on Pelvic Motion during Seated Cycling. Medicine and Science in Sports and Exercise, 2007, 39, 2204-2211.	0.4	43
103	Identification of passive elastic joint moment–angle relationships in the lower extremity. Journal of Biomechanics, 2007, 40, 2628-2635.	2.1	106
104	Muscular coordination of knee motion during the terminal-swing phase of normal gait. Journal of Biomechanics, 2007, 40, 3314-3324.	2.1	55
105	The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. Journal of Biomechanics, 2007, 40, 3555-3562.	2.1	267
106	OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Transactions on Biomedical Engineering, 2007, 54, 1940-1950.	4.2	3,477
107	Contributions of muscles to terminal-swing knee motions vary with walking speed. Journal of Biomechanics, 2007, 40, 3660-3671.	2.1	35
108	Neuromusculoskeletal Models Provide Insights into the Mechanisms and Rehabilitation of Hamstring Strains. Exercise and Sport Sciences Reviews, 2006, 34, 135-141.	3.0	80

#	Article	IF	CITATIONS
109	Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. Journal of Biomechanics, 2006, 39, 1107-1115.	2.1	509
110	Simulation of Biceps Femoris Musculotendon Mechanics during the Swing Phase of Sprinting. Medicine and Science in Sports and Exercise, 2005, 37, 1931-1938.	0.4	144
111	Hamstring Muscle Kinematics during Treadmill Sprinting. Medicine and Science in Sports and Exercise, 2005, 37, 108-114.	0.4	251
112	Effects of step length on stepping responses used to arrest a forward fall. Gait and Posture, 2005, 22, 219-224.	1.4	24
113	Identifying the time of occurrence of a hamstring strain injury during treadmill running: A case study. Clinical Biomechanics, 2005, 20, 1072-1078.	1.2	177
114	The Effect of Walking Speed on Lower-Extremity Joint Powers Among Elderly Adults Who Exhibit Low Physical Performance. Archives of Physical Medicine and Rehabilitation, 2005, 86, 2177-2183.	0.9	106
115	Generating dynamic simulations of movement using computed muscle control. Journal of Biomechanics, 2003, 36, 321-328.	2.1	546
116	Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults. Journal of Biomechanical Engineering, 2003, 125, 70-77.	1.3	498
117	Age and gender differences in peak lower extremity joint torques and ranges of motion used during single-step balance recovery from a forward fall. Journal of Biomechanics, 2001, 34, 67-73.	2.1	99
118	Selfâ€Reported Walking Ability Predicts Functional Mobility Performance in Frail Older Adults. Journal of the American Geriatrics Society, 2000, 48, 1408-1413.	2.6	99
119	Muscle activities used by young and old adults when stepping to regain balance during a forward fall. Journal of Electromyography and Kinesiology, 2000, 10, 93-101.	1.7	95
120	Lumbar Muscle Activities in Rapid Three-dimensional Pulling Tasks. Spine, 1996, 21, 605-613.	2.0	21
121	Do Neural Factors Underlie Age Differences in Rapid Ankle Torque Development?. Journal of the American Geriatrics Society, 1996, 44, 804-808.	2.6	41
122	Co-contraction of lumbar muscles during the development of time-varying triaxial moments. Journal of Orthopaedic Research, 1995, 13, 390-398.	2.3	88
123	Identification of dynamic myoelectric signal-to-force models during isometric lumbar muscle contractions. Journal of Biomechanics, 1994, 27, 907-919.	2.1	76
124	Quantitative interpretation of lumbar muscle myoelectric signals during rapid cyclic attempted trunk flexions and extensions. Journal of Biomechanics, 1994, 27, 157-167.	2.1	32