Tomislav Rovis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/616317/publications.pdf

Version: 2024-02-01

21215 15,464 117 62 citations h-index papers

g-index 143 143 143 9433 docs citations times ranked citing authors all docs

21239

119

#	Article	IF	CITATIONS
1	Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 2487-2649.	23.0	210
2	Tuning the Electrochemical and Photophysical Properties of Osmium-Based Photoredox Catalysts. Synlett, 2022, 33, 247-258.	1.0	10
3	Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19. Nature Communications, 2022, 13, 1891.	5.8	45
4	Copper Catalyzed C(sp ³)–H Bond Alkylation via Photoinduced Ligand-to-Metal Charge Transfer. Journal of the American Chemical Society, 2021, 143, 2729-2735.	6.6	168
5	Inhibitors of Coronavirus 3CL Proteases Protect Cells from Protease-Mediated Cytotoxicity. Journal of Virology, 2021, 95, e0237420.	1.5	27
6	Rh(III)-Catalyzed Three-Component <i>Syn</i> -Carboamination of Alkenes Using Arylboronic Acids and Dioxazolones. ACS Catalysis, 2021, 11, 8585-8590.	5.5	35
7	Iron-Catalyzed Photoinduced LMCT: A 1° C–H Abstraction Enables Skeletal Rearrangements and C(sp ³)–H Alkylation. ACS Catalysis, 2021, 11, 7442-7449.	5.5	100
8	Iron-Catalyzed C(sp3)–H Alkylation through Ligand-to-Metal Charge Transfer. Synlett, 2021, 32, 1767-1771.	1.0	18
9	Late-Stage <i>N</i> -Me Selective Arylation of Trialkylamines Enabled by Ni/Photoredox Dual Catalysis. Journal of the American Chemical Society, 2021, 143, 16364-16369.	6.6	31
10	Preface: Modern Heterocycle Synthesis and Functionalization. Synlett, 2021, 32, 140-141.	1.0	0
11	Diastereoselective Three-Component 3,4-Amino Oxygenation of 1,3-Dienes Catalyzed by a Cationic Heptamethylindenyl Rhodium(III) Complex. Journal of the American Chemical Society, 2021, 143, 17964-17969.	6.6	25
12	Site-Selective α-C–H Functionalization of Trialkylamines via Reversible Hydrogen Atom Transfer Catalysis. Journal of the American Chemical Society, 2021, 143, 18952-18959.	6.6	43
13	Dual Nickel/Photoredox-Catalyzed Deaminative Cross-Coupling of Sterically Hindered Primary Amines. Journal of the American Chemical Society, 2021, 143, 19294-19299.	6.6	38
14	Photocatalyzed Triplet Sensitization of Oximes Using Visible Light Provides a Route to Nonclassical Beckmann Rearrangement Products. Journal of the American Chemical Society, 2021, 143, 21211-21217.	6.6	25
15	Synthesis of Sterically Hindered Primary Amines by Concurrent Tandem Photoredox Catalysis. Journal of the American Chemical Society, 2020, 142, 987-998.	6.6	83
16	Electrochemical Synthesis of Hindered Primary and Secondary Amines via Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2020, 142, 468-478.	6.6	86
17	Rhodium(III)-Catalyzed Three-Component 1,2-Diamination of Unactivated Terminal Alkenes. Synthesis, 2020, 52, 1247-1252.	1.2	15
18	Development of a Platform for Near-Infrared Photoredox Catalysis. ACS Central Science, 2020, 6, 2053-2059.	5.3	95

#	Article	lF	Citations
19	Photoredox-Catalyzed Deaminative Alkylation via $\hat{\text{Ca}}\in \mathbb{N}$ Bond Activation of Primary Amines. Journal of the American Chemical Society, 2020, 142, 18310-18316.	6.6	61
20	A site-selective amination catalyst discriminates between nearly identical C–H bonds of unsymmetrical disubstituted alkenes. Nature Chemistry, 2020, 12, 725-731.	6.6	66
21	Direct Regio†and Diastereoselective Synthesis of δâ€Lactams from Acrylamides and Unactivated Alkenes Initiated by Rh III â€Catalyzed Câ^H Activation. Angewandte Chemie, 2020, 132, 4995-4999.	1.6	4
22	Direct Regio―and Diastereoselective Synthesis of <i>δ</i> â€Lactams from Acrylamides and Unactivated Alkenes Initiated by Rh ^{III} â€Catalyzed Câ^'H Activation. Angewandte Chemie - International Edition, 2020, 59, 4965-4969.	7.2	36
23	A Rh(III)-Catalyzed Formal [4+1] Approach to Pyrrolidines from Unactivated Terminal Alkenes and Nitrene Sources. Journal of the American Chemical Society, 2019, 141, 12536-12540.	6.6	35
24	Ligand Controlled Ir-Catalyzed Regiodivergent Oxyamination of Unactivated Alkenes. Journal of the American Chemical Society, 2019, 141, 11864-11869.	6.6	60
25	Rhodium(III)-Catalyzed Cyclopropanation of Unactivated Olefins Initiated by C–H Activation. Synlett, 2019, 30, 1787-1790.	1.0	13
26	Regioselective Alkylative Cross-Coupling of Remote Unactivated C(⟨i⟩sp⟨ i⟩⟨sup⟩3⟨ sup⟩)–H Bonds. Journal of the American Chemical Society, 2019, 141, 14062-14067.	6.6	72
27	Ir-Catalyzed Intermolecular Branch-Selective Allylic C–H Amidation of Unactivated Terminal Olefins. Journal of the American Chemical Society, 2019, 141, 2268-2273.	6.6	146
28	Photoredox catalysis using infrared light via triplet fusion upconversion. Nature, 2019, 565, 343-346.	13.7	447
29	Rh(III)-Catalyzed C–H Activation-Initiated Directed Cyclopropanation of Allylic Alcohols. Journal of the American Chemical Society, 2019, 141, 6807-6811.	6.6	49
30	Visible-Light-Controlled Ruthenium-Catalyzed Olefin Metathesis. Journal of the American Chemical Society, 2019, 141, 6791-6796.	6.6	74
31	Asymmetric δ-Lactam Synthesis with a Monomeric Streptavidin Artificial Metalloenzyme. Journal of the American Chemical Society, 2019, 141, 4815-4819.	6.6	106
32	Photoredoxâ€Catalyzed Siteâ€Selective αâ€C(sp ³)â^'H Alkylation of Primary Amine Derivatives. Angewandte Chemie, 2019, 131, 4042-4046.	1.6	20
33	Photoredoxâ€Catalyzed Siteâ€Selective αâ€C(sp ³)â^'H Alkylation of Primary Amine Derivatives. Angewandte Chemie - International Edition, 2019, 58, 4002-4006.	7.2	110
34	Photoredoxâ€Catalyzed Alkenylation of Benzylsulfonium Salts. Chemistry - an Asian Journal, 2019, 14, 532-536.	1.7	28
35	Photoinduced Ligand-to-Metal Charge Transfer Enables Photocatalyst-Independent Light-Gated Activation of Co(II). ACS Catalysis, 2019, 9, 200-204.	5.5	51
36	Ir(III)-Catalyzed Carbocarbation of Alkynes through Undirected Double C–H Bond Activation of Anisoles. Journal of the American Chemical Society, 2018, 140, 5370-5374.	6.6	85

#	Article	IF	CITATIONS
37	Cluster Preface: Alkene Halofunctionalization. Synlett, 2018, 29, 399-400.	1.0	O
38	KomplementÃÆ Strategien für die dirigierte C(sp ³)â€Hâ€Funktionalisierung: ein Vergleich von übergangsmetallkatalysierter Aktivierung, Wasserstoffatomtransfer und Carben―oder Nitrentransfer. Angewandte Chemie, 2018, 130, 64-105.	1.6	156
39	Regiodivergent Iridium(III)-Catalyzed Diamination of Alkenyl Amides with Secondary Amines: Complementary Access to \hat{l}^3 - or \hat{l} -Lactams. Journal of the American Chemical Society, 2018, 140, 135-138.	6.6	88
40	Electronic and Steric Tuning of a Prototypical Piano Stool Complex: Rh(III) Catalysis for C–H Functionalization. Accounts of Chemical Research, 2018, 51, 170-180.	7.6	276
41	Rhodium-Catalyzed Desymmetrization of meso-Glutaric Anhydrides to Access Enantioenriched anti,anti-Polypropionates. Synlett, 2018, 29, 306-309.	1.0	2
42	Complementary Strategies for Directed C(sp ³)â^'H Functionalization: A Comparison of Transitionâ€Metalâ€Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer. Angewandte Chemie - International Edition, 2018, 57, 62-101.	7.2	552
43	Generation of Phosphoranyl Radicals via Photoredox Catalysis Enables Voltage–Independent Activation of Strong C–O Bonds. ACS Catalysis, 2018, 8, 11134-11139.	5. 5	211
44	The Catalytic Alkylative Desymmetrization of Anhydrides in a Formal Synthesis of Ionomycin. Synthesis, 2018, 50, 4343-4350.	1.2	1
45	Direct \hat{i} ±-alkylation of primary aliphatic amines enabled by CO2 and electrostatics. Nature Chemistry, 2018, 10, 1037-1041.	6.6	160
46	Stereodivergent Rhodium(III)-Catalyzed cis-Cyclopropanation Enabled by Multivariate Optimization. Journal of the American Chemical Society, 2018, 140, 9587-9593.	6.6	55
47	External Regulation of Cobalt-Catalyzed Cycloaddition Polymerization with Visible Light. ACS Catalysis, 2018, 8, 5323-5327.	5.5	30
48	Correlating Reactivity and Selectivity to Cyclopentadienyl Ligand Properties in Rh(III)-Catalyzed C–H Activation Reactions: An Experimental and Computational Study. Journal of the American Chemical Society, 2017, 139, 1296-1310.	6.6	169
49	Dual Nickel- and Photoredox-Catalyzed Enantioselective Desymmetrization of Cyclic meso -Anhydrides. Angewandte Chemie, 2017, 129, 3733-3737.	1.6	20
50	Dual Nickel―and Photoredoxâ€Catalyzed Enantioselective Desymmetrization of Cyclic <i>meso</i> å€Anhydrides. Angewandte Chemie - International Edition, 2017, 56, 3679-3683.	7.2	99
51	Directed γ-C(sp ³)–H Alkylation of Carboxylic Acid Derivatives through Visible Light Photoredox Catalysis. Journal of the American Chemical Society, 2017, 139, 14897-14900.	6.6	160
52	Experimental and Computational Gas Phase Acidities of Conjugate Acids of Triazolylidene Carbenes: Rationalizing Subtle Electronic Effects. Journal of the American Chemical Society, 2017, 139, 14917-14930.	6.6	33
53	A Mild Hydroaminoalkylation of Conjugated Dienes Using a Unified Cobalt and Photoredox Catalytic System. Journal of the American Chemical Society, 2017, 139, 15504-15508.	6.6	151
54	Cluster Preface: Catalytic Aerobic Oxidations. Synlett, 2017, 28, 1546-1547.	1.0	0

#	Article	IF	CITATIONS
55	Enantioselective N-heterocyclic carbene-catalyzed nucleophilic dearomatization of alkyl pyridiniums. Chemical Science, 2017, 8, 6566-6569.	3.7	66
56	A Photochemical Two-Step Formal [5+2] Cycloaddition: A Condensation–Ring-Expansion Approach to Substituted Azepanes. Synlett, 2017, 28, 2755-2758.	1.0	12
57	Heptamethylindenyl (Ind*) enables diastereoselective benzamidation of cyclopropenes via Rh(<scp>iii</scp>)-catalyzed C–H activation. Chemical Science, 2017, 8, 1015-1020.	3.7	95
58	Amide-directed photoredox-catalysed Câ€"C bond formation at unactivated sp3 Câ€"H bonds. Nature, 2016, 539, 272-275.	13.7	469
59	Visible Light-Gated Cobalt Catalysis for a Spatially and Temporally Resolved [2+2+2] Cycloaddition. Journal of the American Chemical Society, 2016, 138, 15527-15530.	6.6	80
60	N-Heterocyclic Carbene and Chiral BrÃ, nsted Acid Cooperative Catalysis for a Highly Enantioselective [4+2] Annulation. Synthesis, 2016, 49, 293-298.	1.2	24
61	Rhodium(III) atalyzed Allylic C(sp ³)â€"H Activation of Alkenyl Sulfonamides: Unexpected Formation of Azabicycles. Angewandte Chemie - International Edition, 2015, 54, 13337-13340.	7.2	78
62	Influence of Electronic Effects on the Reactivity of Triazolylideneâ€Boryl Radicals: Consequences for the use of Nâ€Heterocyclic Carbene Boranes in Organic and Polymer Synthesis. Chemistry - A European Journal, 2015, 21, 13772-13777.	1.7	12
63	Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. Chemical Reviews, 2015, 115, 9307-9387.	23.0	1,600
64	Expedient Access to 2,3-Dihydropyridines from Unsaturated Oximes by Rh(III)-Catalyzed C–H Activation. Journal of the American Chemical Society, 2015, 137, 8892-8895.	6.6	115
65	Natural polarity inverted. Nature, 2015, 523, 417-418.	13.7	13
66	Cluster Preface: Catalysis Using Sustainable Metals – Part II. Synlett, 2015, 26, 306-306.	1.0	1
67	Zn-Catalyzed Enantio- and Diastereoselective Formal [4 + 2] Cycloaddition Involving Two Electron-Deficient Partners: Asymmetric Synthesis of Piperidines from 1-Azadienes and Nitro-Alkenes. Journal of the American Chemical Society, 2015, 137, 4445-4452.	6.6	40
68	Rhodium-catalysed syn-carboamination of alkenes via a transient directing group. Nature, 2015, 527, 86-90.	13.7	207
69	Oxidatively Initiated NHC-Catalyzed Enantioselective Synthesis of 3,4-Disubstituted Cyclopentanones from Enals. Journal of the American Chemical Society, 2015, 137, 10112-10115.	6.6	109
70	Rhodium(III)-Catalyzed C–H Activation: An Oxidative Intramolecular Heck-Type Reaction Directed by a Carboxylate. Synlett, 2015, 26, 1520-1524.	1.0	43
71	Ligand design for Rh(<scp>iii</scp>)-catalyzed C–H activation: an unsymmetrical cyclopentadienyl group enables a regioselective synthesis of dihydroisoquinolones. Chemical Science, 2015, 6, 254-258.	3.7	128
72	Enantioselective Rhodium-Catalyzed [2+2+2] Cycloaddition of Pentenyl Isocyanate and 4-Ethynylanisole: Preparation and Use of Taddol-pyrrolidine Phosphoramidite. Organic Syntheses, 2014, 91, 150-161.	1.0	1

5

#	Article	IF	Citations
73	Stereoselective Synthesis of Dioxolanes and Oxazolidines via a Desymmetrization Acetalization/Michael Cascade. Synlett, 2014, 25, 713-717.	1.0	16
74	Catalysis Using Sustainable Metals – Part I. Synlett, 2014, 25, 2715-2716.	1.0	0
75	A Late-Stage Strategy for the Functionalization of Triazolium-Based NHC Catalysts. Synlett, 2014, 25, 2665-2668.	1.0	19
76	Pyridine synthesis by $[4 + 2]$ cycloadditions of 1-azadienes: hetero-Diels Alder and transition metal-catalysed approaches. Organic Chemistry Frontiers, 2014, 1, 1010-1015.	2.3	73
77	Cobaltate anion couples terminal dienes with trifluoroacetic anhydride: a direct fluoroacylation of 1,3-dienes. Chemical Science, 2014, 5, 2889-2892.	3.7	13
78	Rapid Construction of (â^')â€Paroxetine and (â^')â€Femoxetine via an Nâ€Heterocyclic Carbene Catalyzed Homoenolate Addition to Nitroalkenes. Asian Journal of Organic Chemistry, 2014, 3, 442-444.	1.3	22
79	Rh(III)-Catalyzed Cyclopropanation Initiated by C–H Activation: Ligand Development Enables a Diastereoselective [2 + 1] Annulation of N-Enoxyphthalimides and Alkenes. Journal of the American Chemical Society, 2014, 136, 11292-11295.	6.6	148
80	Enantioselective N-Heterocyclic Carbene-Catalyzed \hat{I}^2 -Hydroxylation of Enals Using Nitroarenes: An Atom Transfer Reaction That Proceeds via Single Electron Transfer. Journal of the American Chemical Society, 2014, 136, 14674-14677.	6.6	168
81	Rh(III)-Catalyzed Decarboxylative Coupling of Acrylic Acids with Unsaturated Oxime Esters: Carboxylic Acids Serve as Traceless Activators. Journal of the American Chemical Society, 2014, 136, 2735-2738.	6.6	267
82	Rhodium(III)â€Catalyzed Intramolecular Hydroarylation, Amidoarylation, and Heckâ€type Reaction: Three Distinct Pathways Determined by an Amide Directing Group. Angewandte Chemie - International Edition, 2013, 52, 14181-14185.	7.2	154
83	Rh(III)-Catalyzed Regioselective Synthesis of Pyridines from Alkenes and \hat{l}_{\pm},\hat{l}^2 -Unsaturated Oxime Esters. Journal of the American Chemical Society, 2013, 135, 66-69.	6.6	317
84	Asymmetric NHC-catalyzed synthesis of \hat{l}_{\pm} -fluoroamides from readily accessible \hat{l}_{\pm} -fluoroenals. Chemical Science, 2013, 4, 1674.	3.7	60
85	A Coupling of Benzamides and Donor/Acceptor Diazo Compounds To Form γ-Lactams via Rh(III)-Catalyzed C–H Activation. Journal of the American Chemical Society, 2013, 135, 5364-5367.	6.6	463
86	Asymmetric N-Heterocyclic Carbene Catalyzed Addition of Enals to Nitroalkenes: Controlling Stereochemistry via the Homoenolate Reactivity Pathway To Access δ-Lactams. Journal of the American Chemical Society, 2013, 135, 8504-8507.	6.6	96
87	Stable Carbenes: From †Laboratory Curiosities' to Catalysis Mainstays. Synlett, 2013, 24, 1188-1189.	1.0	69
88	SNAr-Derived Decomposition By-products Involving Pentafluorophenyl Triazolium Carbenes. Synlett, 2013, 24, 1229-1232.	1.0	11
89	17th IUPAC Conference on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS 17), Fort Collins, CO, USA, July 28–August 1, 2013. Green Processing and Synthesis, 2013, 2, .	1.3	0
90	Enantioselective Synthesis of the Tricyclic Core of FR901483 Featuring a Rhodium-Catalyzed [2+2+2] Cycloaddition. Synthesis, 2013, 45, 719-728.	1.2	16

#	Article	IF	CITATIONS
91	Rhodium(III)-Catalyzed C-H Activation Mediated Synthesis of Isoquinolones from Amides and Cyclopropenes. Synlett, 2013, 24, 1842-1844.	1.0	61
92	Isolable Analogues of the Breslow Intermediate Derived from Chiral Triazolylidene Carbenes. Journal of the American Chemical Society, 2012, 134, 6143-6145.	6.6	149
93	Nâ€Heterocyclicâ€Carbeneâ€Catalyzed Asymmetric Oxidative Heteroâ€Diels–Alder Reactions with Simple Aliphatic Aldehydes. Angewandte Chemie - International Edition, 2012, 51, 12330-12333.	7.2	168
94	Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C–H Activation. Science, 2012, 338, 500-503.	6.0	722
95	Catalytic Asymmetric α-Acylation of Tertiary Amines Mediated by a Dual Catalysis Mode: N-Heterocyclic Carbene and Photoredox Catalysis. Journal of the American Chemical Society, 2012, 134, 8094-8097.	6.6	517
96	Exploiting Acyl and Enol Azolium Intermediates <i>via</i> Nâ€Hetero―cyclic Carbeneâ€Catalyzed Reactions of αâ€Reducible Aldehydes. Advanced Synthesis and Catalysis, 2012, 354, 1617-1639.	2.1	371
97	Rhodium(iii)-catalyzed oxidative carbonylation of benzamides with carbon monoxide. Chemical Communications, 2011, 47, 12074.	2.2	161
98	An improved catalyst architecture for rhodium(iii) catalyzed $\hat{\text{Ca}}\in \text{H}$ activation and its application to pyridone synthesis. Chemical Science, 2011, 2, 1606-1610.	3.7	223
99	Pyridine synthesis from oximes and alkynesviarhodium(<scp>iii</scp>) catalysis: Cp* and Cp ^t provide complementary selectivity. Chemical Communications, 2011, 47, 11846-11848.	2.2	362
100	N-Heterocyclic Carbene and BrÃ,nsted Acid Cooperative Catalysis: Asymmetric Synthesis of <i>trans</i> -γ-Lactams. Journal of the American Chemical Society, 2011, 133, 12466-12469.	6.6	284
101	Asymmetric -Heterocyclic Carbene (NHC) Catalyzed Acyl Anion Reactivity. Aldrichimica Acta, 2011, 44, 3-11.	4.0	179
102	Rhodium-Catalyzed Oxidative Cycloaddition of Benzamides and Alkynes via Câ^'H/Nâ^'H Activation. Journal of the American Chemical Society, 2010, 132, 10565-10569.	6.6	582
103	Stereospecific Polymerization of Chiral Oxazolidinone-Functionalized Alkenes. Macromolecules, 2010, 43, 7504-7514.	2.2	22
104	N-Heterocyclic Carbene Catalyzed Asymmetric Hydration: Direct Synthesis of α-Protio and α-Deuterio α-Chloro and α-Fluoro Carboxylic Acids. Journal of the American Chemical Society, 2010, 132, 2860-2861.	6.6	155
105	More than Bystanders: The Effect of Olefins on Transitionâ€Metalâ€Catalyzed Crossâ€Coupling Reactions. Angewandte Chemie - International Edition, 2008, 47, 840-871.	7.2	341
106	Ligand-Dependent Catalytic Cycle and Role of Styrene in Nickel-Catalyzed Anhydride Cross-Coupling:Â Evidence for Turnover-Limiting Reductive Elimination. Journal of the American Chemical Society, 2007, 129, 2718-2725.	6.6	85
107	Rhodium-Catalyzed Enantioselective Desymmetrization of <i>meso</i> -3,5-Dimethyl Glutaric Anhydride:  A General Strategy to <i>syn</i> -Deoxypolypropionate Synthons. Journal of the American Chemical Society, 2007, 129, 9302-9303.	6.6	66
108	Enantioselective Synthesis of Hydrobenzofuranones Using an Asymmetric Desymmetrizing Intramolecular Stetter Reaction of Cyclohexadienones. Organic Process Research and Development, 2007, 11, 598-604.	1.3	70

#	Article	IF	CITATIONS
109	A Concise Synthesis of Eupomatilonesâ€4, 6, and 7 by Rhodium-Catalyzed Enantioselective Desymmetrization of Cyclicmeso Anhydrides with Organozinc Reagents Generated In Situ. Angewandte Chemie - International Edition, 2007, 46, 4514-4518.	7.2	45
110	Rhodium-Catalyzed $[2+2+2]$ Cycloaddition of Alkenyl Isocyanates and Alkynes. Journal of the American Chemical Society, 2006, 128, 2782-2783.	6.6	91
111	Asymmetric Synthesis of Hydrobenzofuranones via Desymmetrization of Cyclohexadienones Using the Intramolecular Stetter Reaction. Journal of the American Chemical Society, 2006, 128, 2552-2553.	6.6	288
112	Highly Efficient Nickel-Catalyzed Cross-Coupling of Succinic and Glutaric Anhydrides with Organozinc Reagents. Journal of the American Chemical Society, 2005, 127, 247-254.	6.6	80
113	A Palladium-Catalyzed Enantioselective Alkylative Desymmetrization ofmeso-Succinic Anhydrides. Journal of the American Chemical Society, 2004, 126, 10248-10249.	6.6	69
114	Decarbonylative Cross-Coupling of Cyclic Anhydrides:  Introducing Stereochemistry at an sp3 Carbon in the Cross-Coupling Event. Journal of the American Chemical Society, 2003, 125, 10498-10499.	6.6	116
115	A Mild and Efficient Catalytic Alkylative Monofunctionalization of Cyclic Anhydrides. Journal of the American Chemical Society, 2002, 124, 174-175.	6.6	116
116	Structural and Mechanistic Investigations in Asymmetric Copper(I) and Copper(II) Catalyzed Reactions. Progress in Inorganic Chemistry, 2002, , 1-150.	3.0	27
117	Recent Advances in Catalytic Asymmetric Desymmetrization Reactions., 0,, 275-311.		43