MarÃ-a Victoria Borrachero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6163144/publications.pdf Version: 2024-02-01

		66343	110387
124	4,823	42	64
papers	citations	h-index	g-index
124	124	124	2936
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Potential use of ceramic sanitary ware waste as pozzolanic material. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, 61, 611-621.	1.9	11
2	Activadores alternativos para cementos de activaciÃ ³ n alcalina. Revista ALCONPAT, 2022, 12, 16-31.	0.3	3
3	Durability of Glass Fiber Reinforced Cement (GRC) Containing a High Proportion of Pozzolans. Applied Sciences (Switzerland), 2022, 12, 3696.	2.5	2
4	Hybrid Lime–Pozzolan Geopolymer Systems: Microstructural, Mechanical and Durability Studies. Materials, 2022, 15, 2736.	2.9	2
5	The role of dissolved rice husk ash in the development of binary blast furnace slag-sewage sludge ash alkali-activated mortars. Journal of Building Engineering, 2022, 52, 104472.	3.4	3
6	Reusing Construction and Demolition Waste to Prepare Alkali-Activated Cement. Materials, 2022, 15, 3437.	2.9	11
7	Comparison of original and washed pure sugar cane bagasse ashes as supplementary cementing materials. Construction and Building Materials, 2021, 272, 122001.	7.2	15
8	Lime/pozzolan/geopolymer systems: Performance in pastes and mortars. Construction and Building Materials, 2021, 276, 122208.	7.2	10
9	Air-Void System Characterization of Eco-Cellular Concretes. Journal of Materials in Civil Engineering, 2021, 33, 04021088.	2.9	0
10	Evaluation of the Pozzolanic Activity of Uncontrolled-Combusted Sewage Sludge Ash. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	2
11	Evaluation of the long-term compressive strength development of the sewage sludge ash/metakaolin-based geopolymer. Materiales De Construccion, 2021, 71, e254.	0.7	3
12	Almond-shell biomass ash (ABA): A greener alternative to the use of commercial alkaline reagents in alkali-activated cement. Construction and Building Materials, 2021, 290, 123251.	7.2	14
13	Evaluation of Rice Straw Ash as a Pozzolanic Addition in Cementitious Mixtures. Applied Sciences (Switzerland), 2021, 11, 773.	2.5	14
14	Design and properties of 100% waste-based ternary alkali-activated mortars: Blast furnace slag, olive-stone biomass ash and rice husk ash. Journal of Cleaner Production, 2020, 243, 118568.	9.3	62
15	Stabilization of soil by means alternative alkaliâ€activated cement prepared with spent FCC catalyst. International Journal of Applied Ceramic Technology, 2020, 17, 190-196.	2.1	1
16	Formulation of Alkali-Activated Slag Binder Destined for Use in Developing Countries. Applied Sciences (Switzerland), 2020, 10, 9088.	2.5	3
17	Sustainable Soil-Compacted Blocks Containing Blast Furnace Slag (BFS) Activated with Olive Stone BIOMASS Ash (OBA). Sustainability, 2020, 12, 9824.	3.2	4
18	One-part eco-cellular concrete for the precast industry: Functional features and life cycle assessment. Journal of Cleaner Production, 2020, 269, 122203.	9.3	21

#	Article	IF	CITATIONS
19	One-part blast furnace slag mortars activated with almond-shell biomass ash: A new 100% waste-based material. Materials Letters, 2020, 272, 127882.	2.6	21
20	Effect of different high surface area silicas on the rheology of cement paste. Materiales De Construccion, 2020, 70, 231.	0.7	4
21	Effect of sewage sludge ash on mechanical and microstructural properties of geopolymers based on metakaolin. Construction and Building Materials, 2019, 203, 95-103.	7.2	42
22	Nonlinear Acoustic Spectroscopy and Frequency Sweep Ultrasonics: Case on Thermal Damage Assessment in Mortar. Journal of Nondestructive Evaluation, 2019, 38, 1.	2.4	4
23	Production of bamboo leaf ash by auto-combustion for pozzolanic and sustainable use in cementitious matrices. Construction and Building Materials, 2019, 208, 369-380.	7.2	31
24	Application of alkali-activated industrial waste. , 2019, , 357-424.		17
25	Sewage sludge ash. , 2019, , 121-152.		9
26	Use of residual diatomaceous earth as a silica source in geopolymer production. Materials Letters, 2018, 223, 10-13.	2.6	32
27	Influence of calcium additions on the compressive strength and microstructure of alkaliâ€activated ceramic sanitaryâ€ware. Journal of the American Ceramic Society, 2018, 101, 3094-3104.	3.8	20
28	Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TG). Journal of Thermal Analysis and Calorimetry, 2018, 132, 39-46.	3.6	31
29	New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator. Construction and Building Materials, 2018, 171, 611-621.	7.2	57
30	Optimum Use of Sugar Cane Straw Ash in Alkali-Activated Binders Based on Blast Furnace Slag. Journal of Materials in Civil Engineering, 2018, 30, 04018084.	2.9	6
31	An Approach to a New Supplementary Cementing Material: Arundo donax Straw Ash. Sustainability, 2018, 10, 4273.	3.2	6
32	Microscopic Chemical Characterization and Reactivity in Cementing Systems of Elephant Grass Leaf Ashes. Microscopy and Microanalysis, 2018, 24, 593-603.	0.4	3
33	New eco-cellular concretes: sustainable and energy-efficient materials. Green Chemistry, 2018, 20, 4684-4694.	9.0	26
34	Effect of Pyrogenic Silica and Nanosilica on Portland Cement Matrices. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	10
35	Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials, 2018, 178, 327-338.	7.2	52
36	Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders. Minerals (Basel, Switzerland), 2018, 8, 123.	2.0	13

#	Article	IF	CITATIONS
37	The Compressive Strength and Microstructure of Alkali-Activated Binary Cements Developed by Combining Ceramic Sanitaryware with Fly Ash or Blast Furnace Slag. Minerals (Basel, Switzerland), 2018, 8, 337.	2.0	5
38	Influence of microwave oven calcination on the pozzolanicity of sugar cane bagasse ashes (SCBA) from the cogeneration industry. Construction and Building Materials, 2018, 187, 892-902.	7.2	19
39	Bagasse ash. , 2018, , 559-598.		19
40	Resistance to acid attack of alkali-activated binders: Simple new techniques to measure susceptibility. Construction and Building Materials, 2017, 150, 355-366.	7.2	23
41	A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Materials Letters, 2017, 203, 46-49.	2.6	44
42	Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS). Construction and Building Materials, 2017, 144, 214-224.	7.2	34
43	Geopolymer eco-cellular concrete (GECC) based on fluid catalytic cracking catalyst residue (FCC) with addition of recycled aluminium foil powder. Journal of Cleaner Production, 2017, 168, 1120-1131.	9.3	28
44	Compressive strength and microstructure of alkali-activated mortars with high ceramic waste content. Ceramics International, 2017, 43, 13622-13634.	4.8	55
45	Compressive Strength and Microstructure of Alkali-Activated Blast Furnace Slag/Sewage Sludge Ash (GGBS/SSA) Blends Cured at Room Temperature. Waste and Biomass Valorization, 2017, 8, 1441-1451.	3.4	32
46	New inorganic binders containing ashes from agricultural wastes. , 2017, , 127-164.		7
47	Preliminary studies on hydrated cement for its reuse in geopolymers. DYNA (Colombia), 2016, 83, 229-238.	0.4	3
48	Portland cement, gypsum and fly ash binder systems characterization for lignocellulosic fiber-cement. Construction and Building Materials, 2016, 124, 208-218.	7.2	25
49	Ceramic tiles waste as replacement material in Portland cement. Advances in Cement Research, 2016, 28, 221-232.	1.6	41
50	Increasing the sustainability of alkali-activated binders: The use of sugar cane straw ash (SCSA). Construction and Building Materials, 2016, 124, 148-154.	7.2	42
51	Behaviour of metakaolin-based geopolymers incorporating sewage sludge ash (SSA). Materials Letters, 2016, 180, 192-195.	2.6	35
52	Pozzolanic Reactivity Studies on a Biomass-Derived Waste from Sugar Cane Production: Sugar Cane Straw Ash (SCSA). ACS Sustainable Chemistry and Engineering, 2016, 4, 4273-4279.	6.7	15
53	High strength mortars using ordinary Portland cement–fly ash–fluid catalytic cracking catalyst residue ternary system (OPC/FA/FCC). Construction and Building Materials, 2016, 106, 228-235.	7.2	33
54	Evaluation of the pozzolanic activity of spent FCC catalyst/fly ash mixtures in Portland cement pastes. Thermochimica Acta, 2016, 632, 29-36.	2.7	50

#	Article	IF	CITATIONS
55	Study of the binary system fly ash/sugarcane bagasse ash (FA/SCBA) in SiO2/K2O alkali-activated binders. Fuel, 2016, 174, 307-316.	6.4	44
56	Use of ancient copper slags in Portland cement and alkali activated cement matrices. Journal of Environmental Management, 2016, 167, 115-123.	7.8	76
57	Influence of calcium aluminate cement (CAC) on alkaline activation of red clay brick waste (RCBW). Cement and Concrete Composites, 2016, 65, 177-185.	10.7	60
58	Caracterización de escorias de cobre de fundiciones chilenas del Siglo XIX. Revista De Metalurgia, 2016, 52, 083.	0.5	5
59	Preliminary study on short-term sulphate attack evaluation by non-linear impact resonance acoustic spectroscopy technique. Construction and Building Materials, 2015, 78, 295-302.	7.2	17
60	Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterization of pastes and mechanical strength of mortars. Construction and Building Materials, 2015, 94, 670-677.	7.2	77
61	The effects of moisture and micro-structural modifications in drying mortars on vibration-based NDT methods. Construction and Building Materials, 2015, 94, 565-571.	7.2	23
62	Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials. Optical Engineering, 2015, 55, 011004.	1.0	8
63	Mechanical and durability properties of alkali-activated mortar based on sugarcane bagasse ash and blast furnace slag. Ceramics International, 2015, 41, 13012-13024.	4.8	93
64	Spent FCC Catalyst for Preparing Alkali-Activated Binders: An Opportunity for a High-Degree Valorization. Key Engineering Materials, 2014, 600, 709-716.	0.4	7
65	Assessment of the Pozzolanic Activity of a Spent Catalyst by Conductivity Measurement of Aqueous Suspensions with Calcium Hydroxide. Materials, 2014, 7, 2561-2576.	2.9	11
66	Assessment of Pozzolanic Activity Using Methods Based on the Measurement of Electrical Conductivity of Suspensions of Portland Cement and Pozzolan. Materials, 2014, 7, 7533-7547.	2.9	9
67	Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Advances, 2014, 4, 23846-23852.	3.6	115
68	Influence of the activator concentration and calcium hydroxide addition on the properties of alkali-activated porcelain stoneware. Construction and Building Materials, 2014, 63, 214-222.	7.2	52
69	Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 2014, 115, 72-74.	2.6	79
70	New method to assess the pozzolanic reactivity of mineral admixtures by means of pH and electrical conductivity measurements in lime:pozzolan suspensions. Materiales De Construccion, 2014, 64, e032.	0.7	18
71	Potential use of sewage sludge ash (SSA) as a cement replacement in precast concrete blocks. Materiales De Construccion, 2014, 64, e002.	0.7	24
72	Effect of pozzolans on the hydration process of Portland cement cured at low temperatures. Cement and Concrete Composites, 2013, 42, 41-48.	10.7	62

#	Article	IF	CITATIONS
73	Alkaline Activation of Ceramic Waste Materials. Waste and Biomass Valorization, 2013, 4, 729-736.	3.4	114
74	Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Industrial Crops and Products, 2013, 49, 88-96.	5.2	53
75	Effect of curing time on microstructure and mechanical strength development of alkali activated binders based on vitreous calcium aluminosilicate (VCAS). Bulletin of Materials Science, 2013, 36, 245-249.	1.7	20
76	Alkali activated materials based on fluid catalytic cracking catalyst residue (FCC): Influence of SiO2/Na2O and H2O/FCC ratio on mechanical strength and microstructure. Fuel, 2013, 108, 833-839.	6.4	45
77	Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cement and Concrete Composites, 2013, 35, 1-11.	10.7	142
78	Mechanical and physical performance of low alkalinity cementitious composites reinforced with recycled cellulosic fibres pulp from cement kraft bags. Industrial Crops and Products, 2013, 49, 422-427.	5.2	39
79	Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel, 2013, 109, 493-502.	6.4	66
80	The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans. Cement and Concrete Research, 2013, 50, 51-61.	11.0	79
81	Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 2013, 43, 98-106.	7.2	252
82	Cement equivalence factor evaluations for fluid catalytic cracking catalyst residue. Cement and Concrete Composites, 2013, 39, 12-17.	10.7	28
83	Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials. Materials, 2013, 6, 3108-3127.	2.9	93
84	Pozzolanic reaction rate of fluid catalytic cracking catalyst residue (FC3R) in cement pastes. Advances in Cement Research, 2013, 25, 112-118.	1.6	20
85	Efecto de un aditivo extraÃdo de la planta <i>Agave americana</i> sobre las propiedades fÃsicas y mecánicas de un yeso. Materiales De Construccion, 2013, 63, 79-92.	0.7	1
86	Mechanical Strength of Lime-Rice Husk Ash Mortars: A Preliminary Study. Key Engineering Materials, 2012, 517, 495-499.	0.4	8
87	Alkali activation of vitreous calcium aluminosilicate derived from glass fiber waste. Journal of Sustainable Cement-Based Materials, 2012, 1, 83-93.	3.1	18
88	Mineralogical evolution of Portland cement blended with silica nanoparticles and its effect on mechanical strength. Construction and Building Materials, 2012, 36, 736-742.	7.2	80
89	Structure of Portland Cement Pastes Blended with Sonicated Silica Fume. Journal of Materials in Civil Engineering, 2012, 24, 1295-1304.	2.9	25
90	A new geopolymeric binder from hydrated-carbonated cement. Materials Letters, 2012, 74, 223-225.	2.6	29

#	Article	IF	CITATIONS
91	New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Materials Letters, 2012, 80, 50-52.	2.6	54
92	Increase of the reactivity of densified silica fume by sonication treatment. Ultrasonics Sonochemistry, 2012, 19, 1099-1107.	8.2	32
93	Accelerated carbonation of cement pastes partially substituted with fluid catalytic cracking catalyst residue (FC3R). Cement and Concrete Composites, 2009, 31, 134-138.	10.7	23
94	The carbonation of OPC mortars partially substituted with spent fluid catalytic catalyst (FC3R) and its influence on their mechanical properties. Construction and Building Materials, 2009, 23, 1323-1328.	7.2	23
95	Estudio del comportamiento de diversos residuos de catalizadores de craqueo catalÃŧico (FCC) en cemento Portland. Materiales De Construccion, 2009, 59, 37-52.	0.7	14
96	Mechanical and physical properties of cement blended with sewage sludge ash. Waste Management, 2008, 28, 2495-2502.	7.4	110
97	Granulometric activation of densified silica fume (CSF) by sonication. Advances in Cement Research, 2008, 20, 129-135.	1.6	15
98	Compatibility of fluid catalytic cracking catalyst residue (FC3R) with various types of cement. Advances in Cement Research, 2007, 19, 117-124.	1.6	15
99	The chemical activation of pozzolanic reaction of fluid catalytic cracking catalyst residue (FC3R) in lime pastes. Advances in Cement Research, 2007, 19, 9-16.	1.6	12
100	Reusing fly ash in glass fibre reinforced cement: A new generation of high-quality GRC composites. Waste Management, 2007, 27, 1416-1421.	7.4	16
101	Chemical activation of pozzolanic reaction of fluid catalytic cracking catalyst residue (FC3R) in lime pastes: thermal analysis. Advances in Cement Research, 2004, 16, 123-130.	1.6	7
102	Evaluation of the pozzolanic activity of fluid catalytic cracking catalyst residue (FC3R). Thermogravimetric analysis studies on FC3R-Portland cement pastes. Cement and Concrete Research, 2003, 33, 603-609.	11.0	135
103	Determination of the pozzolanic activity of fluid catalytic cracking residue. Thermogravimetric analysis studies on FC3R–lime pastes. Cement and Concrete Research, 2003, 33, 1085-1091.	11.0	93
104	Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars. Waste Management, 2003, 23, 373-381.	7.4	130
105	Physical, chemical and mechanical properties of fluid catalytic cracking catalyst residue (FC3R) blended cements. Cement and Concrete Research, 2001, 31, 57-61.	11.0	68
106	Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity. Cement and Concrete Research, 2001, 31, 41-49.	11.0	116
107	Determination of amorphous silica in rice husk ash by a rapid analytical method. Cement and Concrete Research, 2001, 31, 227-231.	11.0	91
108	Characterization of lagoon sediments and their pollutant charge. Proposals for reusing. Waste Management Series, 2000, 1, 1014-1021.	0.0	1

#	Article	IF	CITATIONS
109	Mechanical treatment of fly ashes. Cement and Concrete Research, 2000, 30, 543-551.	11.0	74
110	Studies on crystalline rice husk ashes and the activation of their pozzolanic properties. Waste Management Series, 2000, 1, 493-503.	0.0	8
111	Properties of Portland cement mortars incorporating high amounts of oil-fuel ashes. Waste Management, 1999, 19, 1-7.	7.4	16
112	Mechanical behavior of mortars containing sewage sludge ash (SSA) and Portland cements with different tricalcium aluminate content. Cement and Concrete Research, 1999, 29, 87-94.	11.0	93
113	Fluid catalytic cracking catalyst residue (FC3R). Cement and Concrete Research, 1999, 29, 1773-1779.	11.0	103
114	Thermogravimetric Methods for Determining Carbon Content in Fly Ashes. Cement and Concrete Research, 1998, 28, 675-686.	11.0	74
115	Study of Cement-Based Mortars Containing Spanish Ground Sewage Sludge Ash. Studies in Environmental Science, 1997, 71, 349-354.	0.0	14
116	Mechanical treatments of fly ashes. Part III: Studies on strength development of ground fly ashes (GFA) — Cement mortars. Cement and Concrete Research, 1997, 27, 1365-1377.	11.0	90
117	Mechanical treatment of fly ashes part II: Particle morphologies in ground fly ashes (GFA) and workability of GFA-cement mortars. Cement and Concrete Research, 1996, 26, 225-235.	11.0	98
118	Use of sewage sludge ash(SSA)-cement admixtures in mortars. Cement and Concrete Research, 1996, 26, 1389-1398.	11.0	103
119	Comparisons among magnetic and non-magnetic fly ash fractions: Strength development of cement-fly ash mortars. Waste Management, 1996, 16, 119-124.	7.4	27
120	Mechanical treatment of fly ashes. Part I: Physico-chemical characterization of ground fly ashes. Cement and Concrete Research, 1995, 25, 1469-1479.	11.0	115
121	Early-strength development of portland cement mortars containing air classified fly ashes. Cement and Concrete Research, 1995, 25, 449-456.	11.0	60
122	Improvement of Portland Cement/Fly Ash Mortars Strength Using Classified Fly Ashes. Studies in Environmental Science, 1994, 60, 563-570.	0.0	3
123	Orthometallation reaction in dirhodium(II) compounds. Selective formation of doubly-metallated compounds with head-to-head structure. Polyhedron, 1993, 12, 1715-1717.	2.2	11
124	Preliminary Studies on the use of Sugar Cane Bagasse Ash (SCBA) in the Manufacture of Alkali Activated Binders. Key Engineering Materials, 0, 600, 689-698.	0.4	12