
Yanchun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6163027/publications.pdf Version: 2024-02-01

Улисним Г

#	Article	IF	CITATIONS
1	The pH dependence and role of fluorinated substituent of enoxacin binding to ferrihydrite. Science of the Total Environment, 2022, 823, 153707.	8.0	8
2	Visible-Light-Induced Reversible Photochemical Crystal–Liquid Transitions of Azo-Switches for Smart and Robust Adhesives. Chemistry of Materials, 2022, 34, 2636-2644.	6.7	23
3	Generation of Phenol and Molecular Hydrogen through Catalyst-Free C–H Activation of Benzene by Water Radical Cations. Journal of the American Society for Mass Spectrometry, 2022, 33, 68-73.	2.8	7
4	The Reaction Mechanism Study for the F3 System. BioMed Research International, 2022, 2022, 1-7.	1.9	0
5	Graphitic SiC : A potential anode material for Naâ€ion battery with extremely high storage capacity. International Journal of Quantum Chemistry, 2021, 121, e26608.	2.0	2
6	Ionic Transport and Robust Switching Properties of the Confined Self-Assembled Block Copolymer/Homopolymer in Asymmetric Nanochannels. ACS Applied Materials & Interfaces, 2021, 13, 14507-14517.	8.0	15
7	Ultrathin [110] onfined Li ₄ Ti ₅ O ₁₂ Nanoflakes for High Rate Lithium Storage. Advanced Energy Materials, 2021, 11, 2003270.	19.5	22
8	Lithiumâ€lon Batteries: Ultrathin [110]â€Confined Li ₄ Ti ₅ O ₁₂ Nanoflakes for High Rate Lithium Storage (Adv. Energy Mater. 22/2021). Advanced Energy Materials, 2021, 11, 2170084.	19.5	1
9	Phenanthroline Derivative Fluorescent Probe for Rapid and Sensitive Detection of Silver(I). Analytical Sciences, 2021, 37, 871-877.	1.6	2
10	Global accurate diabatic potential surfaces for the reaction H + Li ₂ . RSC Advances, 2020, 10, 39226-39240.	3.6	5
11	Novel nano-patterned structures of mixed hairy nanoparticles in single layer. Polymer, 2020, 192, 122295.	3.8	5
12	PC6 monolayer: A potential candidate as NOx sensor with high sensitivity and selectivity. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113958.	2.7	11
13	First-principles study on the C-excess C3B for its potential application in sensing NO2 and NO. Applied Surface Science, 2020, 512, 145611.	6.1	10
14	Spontaneous Formation of Moiré Patterns through Self-Assembly of Janus Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 4542-4547.	4.6	6
15	Screening NIR fluorescent sensor based on HBQ derivatives: A theoretical study. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 383, 111989.	3.9	6
16	Computer simulation study on the self-assembly of tethered nanoparticles with tunable shapes. RSC Advances, 2019, 9, 1354-1361.	3.6	4
17	Theoretical Design of Near-Infrared Fluorescent Sensor for F Anion Detection Based on 10-Hydroxybenzo[<i>h</i>]quinoline Backbone. ACS Omega, 2019, 4, 10516-10523.	3.5	6
10	An accurate ground state potential surface for the scattering reaction $F(\sup)^{a^{\prime}}(\sup) + E(\sup)^{a^{\prime}}(\sup)^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}()^{a^{\prime}}($	2010	-

18 F₂(<i>v</i>à†' F₂(<i>v</i>′, <i>j</i>à€²) + F^{â^'}. RSC Advances, 2019, 7 9, 1929-1932.

Yanchun Li

#	Article	IF	CITATIONS
19	A computer simulation study of the hierarchical assembly behaviour of triblock patchy particles. Molecular Simulation, 2019, 45, 759-767.	2.0	1
20	The important role of cosolvent in the amphiphilic diblock copolymer self-assembly process. Polymer, 2019, 171, 1-7.	3.8	26
21	Sensing mechanism of HBT based F anion fluorescence sensor: A theoretical study. Sensors and Actuators B: Chemical, 2019, 280, 162-170.	7.8	11
22	Carbon Excess C ₃ N: A Potential Candidate as Li-Ion Battery Material. ACS Applied Materials & Interfaces, 2018, 10, 37135-37141.	8.0	44
23	Experimental observations and dissipative particle dynamic simulations on microstructures of pH-sensitive polymer containing amorphous solid dispersions. International Journal of Pharmaceutics, 2017, 517, 185-195.	5.2	18
24	Engineering the Self-Assembly Induced Emission of Cu Nanoclusters by Au(I) Doping. ACS Applied Materials & Interfaces, 2017, 9, 24899-24907.	8.0	69
25	Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate. ACS Applied Materials & Interfaces, 2016, 8, 35342-35352.	8.0	174
26	MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection. Sensors and Actuators B: Chemical, 2016, 235, 103-109.	7.8	218
27	Influence of molecular-weight polydispersity on the glass transition of polymers. Physical Review E, 2016, 93, 012613.	2.1	26
28	Photoinduced Conversion of Cu Nanoclusters Self-Assembly Architectures from Ribbons to Spheres. Journal of Physical Chemistry C, 2016, 120, 24427-24436.	3.1	18
29	Monolayer Ti ₂ CO ₂ : A Promising Candidate for NH ₃ Sensor or Capturer with High Sensitivity and Selectivity. ACS Applied Materials & Interfaces, 2015, 7, 13707-13713.	8.0	524
30	Hydrogen Bonding Stabilized Self-Assembly of Inorganic Nanoparticles: Mechanism and Collective Properties. ACS Nano, 2015, 9, 5807-5817.	14.6	31
31	Self-Assembly of Nanoclusters into Mono-, Few-, and Multilayered Sheets <i>via</i> Dipole-Induced Asymmetric van der Waals Attraction. ACS Nano, 2015, 9, 6315-6323.	14.6	98
32	Coil to globule transition of homo- and block-copolymer with different topological constraint and chain stiffness. Science China Chemistry, 2015, 58, 1471-1477.	8.2	8
33	Structure and magnetic properties of open-ended silicon carbide nanotubes. RSC Advances, 2015, 5, 52754-52758.	3.6	2
34	Mg intercalation into Ti2C building block. Chemical Physics Letters, 2015, 629, 36-39.	2.6	16
35	The band gap modulation of monolayer Ti ₂ CO ₂ by strain. RSC Advances, 2015, 5, 30438-30444.	3.6	82
36	Protic vs Aprotic Solvent Effect on Proton Transfer in 3-Hydroxyisoquinoline: A Theoretical Study. Journal of Physical Chemistry A, 2015, 119, 11882-11890.	2.5	5

Yanchun Li

#	Article	IF	CITATIONS
37	Functionalization of silicon carbide nanotube by dichlorocarbene: A density functional theory study. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 377-385.	2.7	7
38	Theoretical investigation on the healing mechanism of divacancy defect in CNT growth by C2H2 and C2H4. Journal of Molecular Modeling, 2014, 20, 2125.	1.8	9
39	Evaporation-induced morphology pattern of triblock copolymer A5B10C5 in thin film: A multibody DPD simulation study. Chemical Research in Chinese Universities, 2014, 30, 144-148.	2.6	3
40	Self-assembly of two-patch particles in solution: a Brownian dynamics simulation study. Molecular Simulation, 2014, 40, 449-457.	2.0	8
41	The healing of N-vacancy in boron nitride nanotube by using NO and NO2 molecules: a density functional theoretical study. RSC Advances, 2014, 4, 22688.	3.6	18
42	Entropy-Driven Pattern Formation of Hybrid Vesicular Assemblies Made from Molecular and Nanoparticle Amphiphiles. Journal of the American Chemical Society, 2014, 136, 2602-2610.	13.7	126
43	Colloidal Selfâ€Assembly of Catalytic Copper Nanoclusters into Ultrathin Ribbons. Angewandte Chemie - International Edition, 2014, 53, 12196-12200.	13.8	78
44	Towards larger spatiotemporal scales in polymer simulations. Science Bulletin, 2013, 58, 3595-3599.	1.7	4
45	Reactive scattering for H+ + H2: non-Born-Oppenheimer classical investigation. European Physical Journal D, 2013, 67, 1.	1.3	1
46	Theoretical investigation on the healing mechanism of divacancy defect in graphene growth by reaction with ethylene and acetylene. New Journal of Chemistry, 2013, 37, 640-645.	2.8	24
47	Effects of the Cage Unit Size and Number of Cage Units As Well As Bridge Unit on the Second Order Nonlinear Optical Response in Multicage Electride Molecules. Journal of Physical Chemistry A, 2013, 117, 6678-6686.	2.5	15
48	Self-Assembly of Amphiphilic Plasmonic Micelle-Like Nanoparticles in Selective Solvents. Journal of the American Chemical Society, 2013, 135, 7974-7984.	13.7	251
49	Selfâ€Assembly of Au ₁₅ into Singleâ€Clusterâ€Thick Sheets at the Interface of Two Miscible Highâ€Boiling Solvents. Angewandte Chemie - International Edition, 2013, 52, 9952-9955.	13.8	66
50	Beryllium and boron decoration forms planar tetracoordinate carbon strips at the edge of graphene nanoribbons. Physical Chemistry Chemical Physics, 2011, 13, 2732-2737.	2.8	19
51	Evaporation- and surface-induced morphology of symmetric diblock copolymer thin films: a multibody dissipative particle dynamics study. Molecular Simulation, 2011, 37, 875-883.	2.0	10
52	Electrospun poly(methyl methacrylate) nanofibers and microparticles. Journal of Materials Science, 2010, 45, 1032-1038.	3.7	48
53	Theoretical Investigation of the Interaction between Carbon Monoxide and Carbon Nanotubes with Singleâ€Vacancy Defects. ChemPhysChem, 2010, 11, 3505-3510.	2.1	13
54	Theoretical study of the P-Ylide reaction in the carbon nanotube. Science in China Series B: Chemistry, 2009, 52, 1969-1972.	0.8	3

#	Article	IF	CITATIONS
55	Theoretical Prediction of the Nâ^'H and Oâ^'H Bonds Cleavage Catalyzed by the Single-Walled Silicon Carbide Nanotube. Journal of Physical Chemistry C, 2009, 113, 16736-16740.	3.1	39