Xiaoxia Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6162983/publications.pdf

Version: 2024-02-01

687363 677142 21 564 13 22 citations h-index g-index papers 23 23 23 619 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Overexpression of sheepgrass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2013, 70, 252-260.	5.8	71
2	Transcriptome Analysis in Sheepgrass (Leymus chinensis): A Dominant Perennial Grass of the Eurasian Steppe. PLoS ONE, 2013, 8, e67974.	2.5	68
3	Evolutionary strategies drive a balance of the interacting gene products for the <i>CBL</i> and <i>CIPK</i> gene families. New Phytologist, 2020, 226, 1506-1516.	7.3	52
4	MADS-box family genes in sheepgrass and their involvement in abiotic stress responses. BMC Plant Biology, 2018, 18, 42.	3.6	45
5	bHLH92from sheepgrass acts as a negative regulator of anthocyanin/proanthocyandin accumulation and influences seed dormancy. Journal of Experimental Botany, 2019, 70, 269-284.	4.8	41
6	New Insights on Drought Stress Response by Global Investigation of Gene Expression Changes in Sheepgrass (Leymus chinensis). Frontiers in Plant Science, 2016, 7, 954.	3.6	38
7	A MYB-related transcription factor from sheepgrass, LcMYB2, promotes seed germination and root growth under drought stress. BMC Plant Biology, 2019, 19, 564.	3.6	33
8	LcSAIN1, a Novel Salt-Induced Gene from SheepGrass, Confers Salt Stress Tolerance in Transgenic Arabidopsis and Rice. Plant and Cell Physiology, 2013, 54, 1172-1185.	3.1	32
9	Transcriptome Analysis Reveals Common and Distinct Mechanisms for Sheepgrass (Leymus chinensis) Responses to Defoliation Compared to Mechanical Wounding. PLoS ONE, 2014, 9, e89495.	2.5	29
10	A novel salt-induced gene from sheepgrass, LcSAIN2, enhances salt tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry, 2013, 64, 52-59.	5.8	23
11	Overexpression of a novel coldâ€responsive transcript factor <i><scp>L</scp>c<scp>FIN</scp>1</i> from sheepgrass enhances tolerance to low temperature stress in transgenic plants. Plant Biotechnology Journal, 2016, 14, 861-874.	8.3	23
12	The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility. BMC Genomics, 2014, 15, 399.	2.8	22
13	Transcriptomic Analysis Reveals a Comprehensive Calcium- and Phytohormone-Dominated Signaling Response in Leymus chinensis Self-Incompatibility. International Journal of Molecular Sciences, 2019, 20, 2356.	4.1	16
14	Comparative transcriptome analysis provides insights into the distinct germination in sheepgrass (Leymus chinensis) during seed development. Plant Physiology and Biochemistry, 2019, 139, 446-458.	5. 8	14
15	<i>LcFIN2</i> , a novel chloroplast protein gene from sheepgrass, enhances tolerance to low temperature in Arabidopsis and rice. Physiologia Plantarum, 2019, 166, 628-645.	5.2	12
16	LcMYB4, an unknown function transcription factor gene from sheepgrass, as a positive regulator of chilling and freezing tolerance in transgenic Arabidopsis. BMC Plant Biology, 2020, 20, 238.	3.6	12
17	Antibacterial and Cytotoxic Phenyltetracenoid Polyketides from <i>Streptomyces morookaense</i> Journal of Natural Products, 2021, 84, 1806-1815.	3.0	10
18	Molecular Characterization and Defoliation-Induced Expression of a Sucrose Transporter LcSUT1 Gene in Sheep Grass (Leymus chinensis). Plant Molecular Biology Reporter, 2013, 31, 1184-1191.	1.8	8

XIAOXIA LI

#	Article	IF	CITATIONS
19	Molecular characterization and expression patterns of sucrose transport-related genes in sweet sorghum under defoliation. Acta Physiologiae Plantarum, 2014, 36, 1251-1259.	2.1	5
20	Germination characteristics among different sheepgrass (<i>Leymus chinensis</i>) germplasm during the seed development and after-ripening stages. PeerJ, 2019, 7, e6688.	2.0	5
21	Ectopic Expression of a Salt-Inducible Gene, LcSAIN3, from Sheepgrass Improves Seed Germination and Seedling Growth under Salt Stress in Arabidopsis. Genes, 2021, 12, 1994.	2.4	2