Fernandes, S; Fernandes, SN; Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6162497/publications.pdf

Version: 2024-02-01

Fernandes, S; Fernandes, SN;

#	Article	IF	CITATIONS
1	Analysis of the In Vitro Toxicity of Nanocelluloses in Human Lung Cells as Compared to Multi-Walled Carbon Nanotubes. Nanomaterials, 2022, 12, 1432.	1.9	11
2	Genotoxicity of Three Micro/Nanocelluloses with Different Physicochemical Characteristics in MG-63 and V79 Cells. Journal of Xenobiotics, 2022, 12, 91-108.	2.9	4
3	Cellulose Nanocrystal Aqueous Colloidal Suspensions: Evidence of Density Inversion at the Isotropicâ€Liquid Crystal Phase Transition. Advanced Materials, 2022, 34, e2108227.	11.1	9
4	Travelling colourful patterns in self-organized cellulose-based liquid crystalline structures. Communications Materials, 2021, 2, .	2.9	5
5	Water Dynamics in Composite Aqueous Suspensions of Cellulose Nanocrystals and a Clay Mineral Studied through Magnetic Resonance Relaxometry. Journal of Physical Chemistry B, 2021, 125, 12787-12796.	1.2	5
6	Colourful Patterns in Cellulose-Based Liquid Crystals. Zhidkie Kristally I Ikh Prakticheskoe Ispol'zovanie, 2021, 21, 53-60.	0.0	0
7	Ionically Modified Cellulose Nanocrystal Self-Assembled Films with a Mesoporous Twisted Superstructure: Polarizability and Application in Ion-Gated Transistors. ACS Applied Electronic Materials, 2020, 2, 426-436.	2.0	13
8	Playing the blues, the greens and the reds with cellulose-based structural colours. Faraday Discussions, 2020, 223, 247-260.	1.6	6
9	All-cellulose composite membranes for oil microdroplet collection. Cellulose, 2020, 27, 4665-4677.	2.4	11
10	Flexible and Structural Coloured Composite Films from Cellulose Nanocrystals/Hydroxypropyl Cellulose Lyotropic Suspensions. Crystals, 2020, 10, 122.	1.0	24
11	Photonic composite materials from cellulose nanorods and clay nanolayers. European Physical Journal: Special Topics, 2020, 229, 2741-2755.	1.2	6
12	Flexible random lasers in dye-doped bio-degradable cellulose nanocrystalline needles. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 24.	0.9	7
13	Nanocellulose-Based Random Laser. , 2019, , .		1
14	Recent advances in the manipulation of circularly polarised light with cellulose nanocrystal films. Current Opinion in Solid State and Materials Science, 2019, 23, 63-73.	5.6	27
15	Fieldâ€Effect Transistors on Photonic Cellulose Nanocrystal Solid Electrolyte for Circular Polarized Light Sensing. Advanced Functional Materials, 2019, 29, 1805279.	7.8	48
16	Celluloseâ€Based Biomimetics and Their Applications. Advanced Materials, 2018, 30, e1703655.	11.1	143
17	Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels, 2018, 4, 54.	2.1	144
18	Celluloseâ€Based Materials: Celluloseâ€Based Biomimetics and Their Applications (Adv. Mater. 19/2018). Advanced Materials, 2018, 30, 1870131.	11.1	6

Fernandes, S; Fernandes, S N;

#	Article	IF	CITATIONS
19	Liquid fibres and their networks from cellulose-based liquid crystalline solutions. Liquid Crystals, 2018, 45, 1987-1995.	0.9	5
20	Cellulosic liquid crystals for films and fibers. Liquid Crystals Reviews, 2017, 5, 86-110.	1.1	22
21	Mind the Microgap in Iridescent Cellulose Nanocrystal Films. Advanced Materials, 2017, 29, 1603560.	11.1	163
22	Hybrid polysaccharide-based systems for biomedical applications. , 2017, , 107-149.		3
23	Twisted, 10–12 May 2017, Luxembourg. Liquid Crystals Today, 2017, 26, 59-62.	2.3	Ο
24	Effect of cellulose nanocrystals in a cellulosic liquid crystal behaviour under low shear (regime I): Structure and molecular dynamics. European Polymer Journal, 2016, 84, 675-684.	2.6	7
25	Cellulose-based nanostructures for photoresponsive surfaces. Cellulose, 2016, 23, 465-476.	2.4	5
26	Macromol. Rapid Commun. 12/2015. Macromolecular Rapid Communications, 2015, 36, 1220-1220.	2.0	0
27	Rheo-optical characterization of liquid crystalline acetoxypropylcellulose melt undergoing large shear flow and relaxation after flow cessation. Polymer, 2015, 71, 102-112.	1.8	5
28	Revealing the Hierarchical Mechanical Strength of Single Cellulose Acetate Electrospun Filaments through Ultrasonic Breakage. Macromolecular Rapid Communications, 2015, 36, 1166-1170.	2.0	3
29	1H–2H Cross-Relaxation Study in a Partially Deuterated Nematic Liquid Crystal. Journal of Physical Chemistry B, 2014, 118, 5600-5607.	1.2	7
30	Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology, 2014, 25, 094008.	1.3	218
31	Structural Color and Iridescence in Transparent Sheared Cellulosic Films. Macromolecular Chemistry and Physics, 2013, 214, 25-32.	1.1	89
32	Copolymerization of ethylene with unsaturated alcohols and methylmethacrylate using a silylated αâ€diimine nickel catalyst: Molecular modeling and photodegradation studies. Journal of Applied Polymer Science, 2013, 129, 1820-1832.	1.3	10
33	A cellulose liquid crystal motor: a steam engine of the second kind. Scientific Reports, 2013, 3, 1028.	1.6	48
34	Cellulose-Based Liquid Crystalline Photoresponsive Films with Tunable Surface Wettability. Langmuir, 2011, 27, 6330-6337.	1.6	19
35	New phospholyl complexes of groups 4 and 6: Syntheses, characterisation and polymerisation studies. Inorganica Chimica Acta, 2009, 362, 1275-1281.	1.2	4
36	Photodegradation of ethylene/propylene/polar monomers, co-, and terpolymers. II. Prepared by Ni catalyst systems. Journal of Applied Polymer Science, 2007, 104, 1783-1791.	1.3	2

Fernandes, S; Fernandes, S N;

#	Article	IF	CITATIONS
37	Dielectric and thermal characterization of low density ethylene/10â€undecenâ€1â€ol copolymers prepared with nickel catalysts. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2802-2812.	2.4	5
38	Titanium and zirconium ketimide complexes: synthesis and ethylene polymerisation catalysis. Journal of Organometallic Chemistry, 2005, 690, 874-884.	0.8	33
39	Copolymerization of ethylene/unsaturated alcohols using nickel catalysts: effect of the ligand on the activity and comonomer incorporation. Journal of Organometallic Chemistry, 2005, 690, 895-909.	0.8	18
40	Synthesis of acrylamide end-functionalised poly(1-hexene) using an ?-diimine nickel catalyst. Polymer International, 2005, 54, 249-255.	1.6	13
41	Photodegradation of Ethylene/Propylene/Polar Monomers Co―and Terpolymers. I—Prepared by Group 4 Catalyst Systems. Journal of Macromolecular Science - Pure and Applied Chemistry, 2005, 42, 1259-1270.	1.2	0
42	Titanium ketimide complexes as α-olefin homo- and copolymerisation catalysts. X-ray diffraction structures of [TiCp′(Nĩ~CtBu2)Cl2] (Cp′=Ind, Cp*). Journal of Organometallic Chemistry, 2004, 689, 203-2	19.8	42
43	Polymerisation of ethylene catalysed by mono-imine-2,6-diacetylpyridine iron/methylaluminoxane (MAO) catalyst system: effect of the ligand on polymer microstructure. Polymer International, 2002, 51, 1301-1303.	1.6	23
44	Polymerization of olefins and polar monomers catalyzed by bis(imino)Ni(II)/dibutylmagnesium/alkylaluminium halide systems. Polymer International, 2002, 51, 729-737.	1.6	22
45	Synthesis of polar vinyl monomer-olefin copolymers by α-diimine nickel catalyst. Polymer International, 2001, 50, 579-587.	1.6	18
46	Synthesis of acrylamide/olefin copolymers by a diimine nickel catalyst. Macromolecular Chemistry and Physics, 2000, 201, 2464-2468.	1.1	30
47	Diimine nickel catalysis of ethylene copolymerization with polar cyclic monomers. Macromolecular Chemistry and Physics, 2000, 201, 2566-2572.	1.1	26
48	Synthesis of acrylamide/olefin copolymers by a diimine nickel catalyst. , 2000, 201, 2464.		1