Mazaher Gholipourmalekabadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/616243/publications.pdf

Version: 2024-02-01

76 papers 2,499 citations

30 h-index 214527 47 g-index

80 all docs 80 docs citations

80 times ranked

3272 citing authors

#	Article	IF	Citations
1	Oxygen-Generating Biomaterials: A New, Viable Paradigm for Tissue Engineering?. Trends in Biotechnology, 2016, 34, 1010-1021.	4.9	186
2	Silk fibroin for skin injury repair: Where do things stand?. Advanced Drug Delivery Reviews, 2020, 153, 28-53.	6.6	139
3	Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Composites Science and Technology, 2012, 72, 716-723.	3.8	101
4	Silk fibroin/amniotic membrane 3D bi-layered artificial skin. Biomedical Materials (Bristol), 2018, 13, 035003.	1.7	97
5	Osteogenic potential of stem cellsâ€seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton's jelly, and adipose tissue. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 61-72.	1.6	89
6	Chitosan-Intercalated Montmorillonite/Poly(vinyl alcohol) Nanofibers as a Platform to Guide Neuronlike Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells. ACS Applied Materials & Differentiation of Human Dental Pulp Stem Cells & Di	4.0	81
7	Development of a Costâ€Effective and Simple Protocol for Decellularization and Preservation of Human Amniotic Membrane as a Soft Tissue Replacement and Delivery System for Bone Marrow Stromal Cells. Advanced Healthcare Materials, 2015, 4, 918-926.	3.9	72
8	3D Protein-Based Bilayer Artificial Skin for the Guided Scarless Healing of Third-Degree Burn Wounds in Vivo. Biomacromolecules, 2018, 19, 2409-2422.	2.6	68
9	Bacteriophage Based Biosensors: Trends, Outcomes and Challenges. Nanomaterials, 2020, 10, 501.	1.9	68
10	Targeted Drug Delivery Based on Gold Nanoparticle Derivatives. Current Pharmaceutical Design, 2017, 23, 2918-2929.	0.9	67
11	Decellularized human amniotic membrane: how viable is it as a delivery system for human adipose tissueâ€derived stromal cells?. Cell Proliferation, 2016, 49, 115-121.	2.4	65
12	Decellularized human amniotic membrane: more is needed for an efficient dressing for protection of burns against antibiotic-resistant bacteria isolated from burn patients. Burns, 2015, 41, 1488-1497.	1,1	62
13	Antimicrobial peptides-loaded smart chitosan hydrogel: Release behavior and antibacterial potential against antibiotic resistant clinical isolates. International Journal of Biological Macromolecules, 2020, 164, 855-862.	3.6	62
14	Fabrication and (i) in vivo (i) evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2016, 104, 2001-2010.	2.1	59
15	Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: A review. Materials Science and Engineering C, 2021, 131, 112489.	3.8	55
16	Hydrogels as Emerging Materials for Cornea Wound Healing. Small, 2021, 17, e2006335.	5.2	52
17	Surface Topography and Electrical Signaling: Single and Synergistic Effects on Neural Differentiation of Stem Cells. Advanced Functional Materials, 2020, 30, 1907792.	7.8	50
18	Optimization of nanofibrous silk fibroin scaffold as a delivery system for bone marrow adherent cells: <i>in vitro</i> and <i>in vivo</i> studies. Biotechnology and Applied Biochemistry, 2015, 62, 785-794.	1.4	48

#	Article	IF	CITATIONS
19	Title is missing!. Journal of Medical and Biological Engineering, 2013, 33, 207.	1.0	46
20	<i>In vitro</i> and <i>in vivo</i> evaluations of threeâ€dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds. Biotechnology and Applied Biochemistry, 2015, 62, 441-450.	1.4	45
21	How preparation and preservation procedures affect the properties of amniotic membrane? How safe are the procedures?. Burns, 2020, 46, 1254-1271.	1.1	45
22	Evaluation of metformin effects in the chronic phase of spontaneous seizures in pilocarpine model of temporal lobe epilepsy. Metabolic Brain Disease, 2018, 33, 107-114.	1.4	44
23	Crosstalk between chitosan and cell signaling pathways. Cellular and Molecular Life Sciences, 2019, 76, 2697-2718.	2.4	44
24	Osteoblast–Seeded Bioglass/Gelatin Nanocomposite: A Promising Bone Substitute in Critical-Size Calvarial Defect Repair in Rat. International Journal of Artificial Organs, 2016, 39, 524-533.	0.7	43
25	The correlation between Toxoplasma gondii infection and prenatal depression in pregnant women. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 1829-1835.	1.3	41
26	Modulation of Hypertrophic Scar Formation Using Amniotic Membrane/Electrospun Silk Fibroin Bilayer Membrane in a Rabbit Ear Model. ACS Biomaterials Science and Engineering, 2019, 5, 1487-1496.	2.6	41
27	Thermo-responsive chitosan hydrogel for healing of full-thickness wounds infected with XDR bacteria isolated from burn patients: In vitro and in vivo animal model. International Journal of Biological Macromolecules, 2020, 164, 4475-4486.	3.6	41
28	Silver- and fluoride-containing mesoporous bioactive glasses versus commonly used antibiotics: Activity against multidrug-resistant bacterial strains isolated from patients with burns. Burns, 2016, 42, 131-140.	1.1	37
29	Olfactory mucosa stem cells: An available candidate for the treatment of the Parkinson's disease. Journal of Cellular Physiology, 2019, 234, 23763-23773.	2.0	36
30	Improvement, scaling-up, and downstream analysis of exosome production. Critical Reviews in Biotechnology, 2020, 40, 1098-1112.	5.1	36
31	Artificial testis: a testicular tissue extracellular matrix as a potential bio-ink for 3D printing. Biomaterials Science, 2021, 9, 3465-3484.	2.6	33
32	Human Olfactory Mucosa Stem Cells Delivery Using a Collagen Hydrogel: As a Potential Candidate for Bone Tissue Engineering. Materials, 2021, 14, 3909.	1.3	32
33	Synthesis and characterization of novel mesoporous strontium-modified bioactive glass nanospheres for bone tissue engineering applications. Microporous and Mesoporous Materials, 2020, 294, 109889.	2.2	30
34	Detection and qualification of optimum antibacterial and cytotoxic activities of silverâ€doped bioactive glasses. IET Nanobiotechnology, 2015, 9, 209-214.	1.9	29
35	Fabrication and characterization of an antibacterial chitosan/silk fibroin electrospun nanofiber loaded with a cationic peptide for wound-dressing application. Journal of Materials Science: Materials in Medicine, 2021, 32, 114.	1.7	28
36	Synthesis and characterization of nanocrystalline forsterite coated poly(l-lactide-co-β-malic acid) scaffolds for bone tissue engineering applications. Materials Science and Engineering C, 2015, 50, 117-123.	3.8	27

#	Article	IF	CITATIONS
37	Optimization of fluoride-containing bioactive glasses as a novel scolicidal agent adjunct to hydatid surgery. Acta Tropica, 2015, 148, 105-114.	0.9	26
38	Emerging roles of exosomal miRNAs in breast cancer drug resistance. IUBMB Life, 2019, 71, 1672-1684.	1.5	26
39	Comparing various protocols of human and bovine ovarian tissue decellularization to prepare extracellular matrix-alginate scaffold for better follicle development in vitro. BMC Biotechnology, 2021, 21, 8.	1.7	24
40	Design, preparation, and characterization of silk fibroin/carboxymethyl cellulose wound dressing for skin tissue regeneration applications. Polymer Engineering and Science, 2022, 62, 2741-2749.	1.5	24
41	Biological Response of Biphasic Hydroxyapatite/Tricalcium Phosphate Scaffolds Intended for Low Load-Bearing Orthopaedic Applications. Advanced Composites Letters, 2012, 21, 096369351202100.	1.3	23
42	A Dermal Equivalent Engineered with TGFâ€Î²3 Expressing Bone Marrow Stromal Cells and Amniotic Membrane: Cosmetic Healing of Fullâ€Thickness Skin Wounds in Rats. Artificial Organs, 2016, 40, E266-E279.	1.0	22
43	Comparison of the antibacterial effects of a short cationic peptide and 1% silver bioactive glass against extensively drug-resistant bacteria, Pseudomonas aeruginosa and Acinetobacter baumannii, isolated from burn patients. Amino Acids, 2018, 50, 1617-1628.	1.2	21
44	Layered double hydroxide-galactose as an excellent nanocarrier for targeted delivery of curcumin to hepatocellular carcinoma cells. Applied Clay Science, 2021, 200, 105891.	2.6	21
45	Optimization of decellularized human placental macroporous scaffolds for spermatogonial stem cells homing. Journal of Materials Science: Materials in Medicine, 2021, 32, 47.	1.7	18
46	Synthesis, Physico-chemical Characteristics And Cellular Behavior Of Poly (lactic-co-glycolic Acid)/ Gelatin Nanofibrous Scaffolds For Engineering Soft Connective Tissues. Advanced Materials Letters, 2016, 7, 163-169.	0.3	18
47	Fabrication of newly developed pectin –GeO ₂ nanocomposite using extreme biomimetics route and its antibacterial activities. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 655-661.	1.2	16
48	Conductive chitosan/polyaniline hydrogel with cell-imprinted topography as a potential substrate for neural priming of adipose derived stem cells. RSC Advances, 2021, 11, 15795-15807.	1.7	16
49	Bioengineering of fibroblastâ€conditioned polycaprolactone/gelatin electrospun scaffold for skin tissue engineering. Artificial Organs, 2022, 46, 1040-1054.	1.0	16
50	Fabrication of an Antimicrobial Peptide-Loaded Silk Fibroin/Gelatin Bilayer Sponge to Apply as a Wound Dressing; An In Vitro Study. International Journal of Peptide Research and Therapeutics, 2022, 28, 1.	0.9	12
51	Protocols for decellularization of human amniotic membrane. Methods in Cell Biology, 2020, 157, 37-47.	0.5	11
52	The in vivo effect of Lacto-N-neotetraose (LNnT) on the expression of type 2 immune response involved genes in the wound healing process. Scientific Reports, 2020, 10, 997.	1.6	11
53	Long-term preservation effects on biological properties of acellular placental sponge patches. Materials Science and Engineering C, 2021, 121, 111814.	3.8	11
54	Mechanical and tribological properties of V–C–N coatings as a function of applied bias voltage. Journal of Superhard Materials, 2016, 38, 337-350.	0.5	10

#	Article	IF	Citations
55	Repair of Critical-Sized Rat Calvarial Defects With Three-Dimensional Hydroxyapatite-Gelatin Scaffolds and Bone Marrow Stromal Stem Cells. Medicinski Arhiv = Medical Archives = Archives De Médecine, 2018, 72, 88.	0.4	10
56	Nanocomposite scaffold seeded with mesenchymal stem cells for bone repair. Cell Biology International, 2019, 43, 1379-1392.	1.4	9
57	Photoâ€crosslinked gelatin–polyvinyl alcohol composite films: UV–riboflavin treatment for improving functional properties. Journal of Food Processing and Preservation, 2020, 44, e14550.	0.9	8
58	Threeâ€dimensional electrospun gelatin scaffold coseeded with embryonic stem cells and sertoli cells: A promising substrate for in vitro coculture system. Journal of Cellular Biochemistry, 2019, 120, 12508-12518.	1.2	7
59	Human Amniotic Membrane as a Biological Source for Regenerative Medicine. Pancreatic Islet Biology, 2016, , 81-105.	0.1	5
60	Nanobiomaterials set to revolutionize drug-delivery systems for the treatment of diabetes. , 2016, , 487-514.		4
61	Polyaniline-Based Blends. , 2018, , 149-174.		4
62	Effect of Co-administration of Bumetanide and Phenobarbital on Seizure Attacks in Temporal Lobe Epilepsy. Basic and Clinical Neuroscience, 2018, 9, 408-416.	0.3	4
63	Gelatin Electrospun Mat as a Potential Co-culture System for <i>In Vitro</i> Production of Sperm Cells from Embryonic Stem Cells. ACS Biomaterials Science and Engineering, 2020, 6, 5823-5832.	2.6	4
64	How Ethanol Treatment Affects The Physico-chemical And Biological Characteristics Of Silk Fibroin Nanofibrous Scaffolds. Advanced Materials Letters, 2015, 6, 391-394.	0.3	4
65	Intravenous Administration of Granulocyte-Colony Stimulating Factor for Stem Cells Mobilization and Third Degree Burn Wound Healing in Rats. Journal of Applied Biotechnology Reports, 2019, 6, 83-87.	0.9	3
66	Oxygen-generating nanobiomaterials for the treatment of diabetes., 2016,, 331-353.		2
67	Lymphoid lineage differentiation potential of mouse nuclear transfer embryonic stem cells. Biologicals, 2015, 43, 349-354.	0.5	1
68	Grafted biopolymers II: synthesis and characterization., 2019,, 43-63.		1
69	3D scaffold materials for skin cancer modeling. , 2020, , 305-328.		1
70	Characterization of Lung Fibroblasts More than Two Decades after Mustard Gas Exposure. PLoS ONE, 2015, 10, e0145148.	1.1	1
71	Structure-properties relationship for energy storage redox polymers: a review. Journal of Polymer Engineering, 2020, 40, 373-393.	0.6	1
72	1. Cationic antimicrobial polymers. , 2019, , 1-32.		0

#	Article	IF	CITATIONS
73	2. Antibacterial activity of amphiphilic polymers. , 2019, , 33-56.		O
74	5. Biocidal activity of biodegradable polymers. , 2019, , 107-124.		0
75	Functionalized Polymers Processed by 3D Printing. , 2021, , 153-168.		O
76	Organic Montmorillonite Intercalated Nano-composites Prevent Post-Surgical Associated Infections. Advanced Materials Letters, 2020, 11, 18-21.	0.3	0