Morten H H NÃ, rholm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6162424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibiotic-Efficient Genetic Cassette for the TEM-1 β-Lactamase That Improves Plasmid Performance. ACS Synthetic Biology, 2022, 11, 241-253.	3.8	4
2	Protonation State of an Important Histidine from High Resolution Structures of Lytic Polysaccharide Monooxygenases. Biomolecules, 2022, 12, 194.	4.0	12
3	Colorimetric LPMO assay with direct implication for cellulolytic activity. Biotechnology for Biofuels, 2021, 14, 51.	6.2	16
4	LyGo: A Platform for Rapid Screening of Lytic Polysaccharide Monooxygenase Production. ACS Synthetic Biology, 2021, 10, 897-906.	3.8	12
5	Copper binding and reactivity at the histidine brace motif: insights from mutational analysis of the <i>Pseudomonas fluorescens</i> copper chaperone CopC. FEBS Letters, 2021, 595, 1708-1720.	2.8	9
6	DisCoTune: versatile auxiliary plasmids for the production of disulphideâ€containing proteins and peptides in the <i>E.Âcoli</i> T7 system. Microbial Biotechnology, 2021, 14, 2566-2580.	4.2	8
7	Tailoring the evolution of BL21(DE3) uncovers a key role for RNA stability in gene expression toxicity. Communications Biology, 2021, 4, 963.	4.4	15
8	Temporal evolution of master regulator Crp identifies pyrimidines as catabolite modulator factors. Nature Communications, 2021, 12, 5880.	12.8	14
9	A standardized genome architecture for bacterial synthetic biology (SEGA). Nature Communications, 2021, 12, 5876.	12.8	9
10	Restoring Global Gene Regulation through Experimental Evolution Uncovers a NAP (Nucleoid-Associated Protein)-Like Behavior of Crp/Cap. MBio, 2021, 12, e0202821.	4.1	6
11	Scission of Glucosidic Bonds by a <i>Lentinus similis</i> Lytic Polysaccharide Monooxygenases Is Strictly Dependent on H ₂ O ₂ while the Oxidation of Saccharide Products Depends on O ₂ . ACS Catalysis, 2021, 11, 13848-13859.	11.2	17
12	The ProUSER2.0 Toolbox: Genetic Parts and Highly Customizable Plasmids for Synthetic Biology in Bacillus subtilis. ACS Synthetic Biology, 2021, , .	3.8	4
13	Biochemical evidence of both copper chelation and oxygenase activity at the histidine brace. Scientific Reports, 2020, 10, 16369.	3.3	27
14	Increased production of periplasmic proteins in Escherichia coli by directed evolution of the translation initiation region. Microbial Cell Factories, 2020, 19, 85.	4.0	25
15	Mutations in the Global Transcription Factor CRP/CAP: Insights from Experimental Evolution and Deep Sequencing. Computational and Structural Biotechnology Journal, 2019, 17, 730-736.	4.1	19
16	Industrializing a Bacterial Strain for <scp>l</scp> -Serine Production through Translation Initiation Optimization. ACS Synthetic Biology, 2019, 8, 2347-2358.	3.8	21
17	TARSyn: Tunable Antibiotic Resistance Devices Enabling Bacterial Synthetic Evolution and Protein Production. ACS Synthetic Biology, 2018, 7, 432-442.	3.8	26
18	A synbio approach for selection of highly expressed gene variants in Gram-positive bacteria. Microbial Cell Factories, 2018, 17, 37.	4.0	5

2

Morten H H NÃ, RHOLM

#	Article	IF	CITATIONS
19	Selection of Highly Expressed Gene Variants in Escherichia coli Using Translationally Coupled Antibiotic Selection Markers. Methods in Molecular Biology, 2018, 1671, 259-268.	0.9	2
20	Bacterial Genome Editing Strategy for Control of Transcription and Protein Stability. Methods in Molecular Biology, 2018, 1671, 27-37.	0.9	2
21	Standardized Cloning and Curing of Plasmids. Methods in Molecular Biology, 2018, 1772, 469-476.	0.9	8
22	Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3). Scientific Reports, 2017, 7, 45089.	3.3	38
23	CRISPR/Cas9-based genome editing for simultaneous interference with gene expression and protein stability. Nucleic Acids Research, 2017, 45, e171-e171.	14.5	15
24	Increasing the permeability of Escherichia coli using MAC13243. Scientific Reports, 2017, 7, 17629.	3.3	85
25	A versatile one-step CRISPR-Cas9 based approach to plasmid-curing. Microbial Cell Factories, 2017, 16, 135.	4.0	57
26	Side effects of extra tRNA supplied in a typical bacterial protein production scenario. Protein Science, 2016, 25, 2102-2108.	7.6	10
27	Generation of mutation hotspots in ageing bacterial colonies. Scientific Reports, 2016, 6, 2.	3.3	231
28	A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity. Microbial Cell Factories, 2016, 15, 71.	4.0	18
29	SEVA Linkers: A Versatile and Automatable DNA Backbone Exchange Standard for Synthetic Biology. ACS Synthetic Biology, 2016, 5, 1177-1181.	3.8	19
30	Enhanced Protein Production in <i>Escherichia coli</i> by Optimization of Cloning Scars at the Vector–Coding Sequence Junction. ACS Synthetic Biology, 2015, 4, 959-965.	3.8	46
31	Accurate DNA Assembly and Genome Engineering with Optimized Uracil Excision Cloning. ACS Synthetic Biology, 2015, 4, 1042-1046.	3.8	83
32	Improved production of membrane proteins in <i>Escherichia coli</i> by selective codon substitutions. FEBS Letters, 2013, 587, 2352-2358.	2.8	34
33	Manipulating the genetic code for membrane protein production: What have we learnt so far?. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1091-1096.	2.6	24
34	Converting a Marginally Hydrophobic Soluble Protein into a Membrane Protein. Journal of Molecular Biology, 2011, 407, 171-179.	4.2	5
35	Flanking Residues Help Determine Whether a Hydrophobic Segment Adopts a Monotopic or Bitopic Topology in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 2011, 286, 25284-25290.	3.4	17
36	A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnology, 2010, 10, 21.	3.3	220

#	Article	IF	CITATIONS
37	Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Research, 2006, 34, e122-e122.	14.5	444