Frode Rise

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6162363/publications.pdf

Version: 2024-02-01

94433 149698 4,254 141 37 56 citations h-index g-index papers 163 163 163 4172 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Polysaccharides from Aconitum carmichaelii leaves: Structure, immunomodulatory and anti-inflammatory activities. Carbohydrate Polymers, 2022, 291, 119655.	10.2	29
2	Structural Characterization of Maitotoxins Produced by Toxic Gambierdiscus Species. Marine Drugs, 2022, 20, 453.	4.6	8
3	Isolation, characterisation and complement fixation activity of acidic polysaccharides from <i>Argemone mexicana</i> used as antimalarials in Mali. Pharmaceutical Biology, 2022, 60, 1278-1285.	2.9	4
4	Quantification of Fatty Acids and their Regioisomeric Distribution in Triacylglycerols from Porcine and Bovine Sources Using <scp>¹³C NMR</scp> Spectroscopy. Lipids, 2021, 56, 111-122.	1.7	4
5	Characterization of an antioxidant pectic polysaccharide from Platycodon grandiflorus. International Journal of Biological Macromolecules, 2021, 175, 473-480.	7.5	25
6	New pectic polysaccharides from <scp><i>Codonopsis pilosula</i></scp> and <i><scp>Codonopsis</scp> tangshen</i> : structural characterization and cellular antioxidant activities. Journal of the Science of Food and Agriculture, 2021, 101, 6043-6052.	3 . 5	22
7	OTEH-7. Molecular characterization of tumor stiffness in glioblastoma. Neuro-Oncology Advances, 2021, 3, ii11-ii12.	0.7	O
8	Water-soluble polysaccharides from Pleurotus eryngii fruiting bodies, their activity and affinity for Toll-like receptor 2 and dectin-1. Carbohydrate Polymers, 2021, 264, 117991.	10.2	26
9	Identification of 24-O-Î ² -d-Glycosides and 7-Deoxy-Analogues of Okadaic Acid and Dinophysistoxin-1 and -2 in Extracts from Dinophysis Blooms, Dinophysis and Prorocentrum Cultures, and Shellfish in Europe, North America and Australasia. Toxins, 2021, 13, 510.	3.4	4
10	The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158965.	2.4	4
11	In situ cofactor regeneration enables selective CO2 reduction in a stable and efficient enzymatic photoelectrochemical cell. Applied Catalysis B: Environmental, 2021, 296, 120349.	20.2	21
12	Searching for a UV-filter in the eyes of high-flying birds. Scientific Reports, 2021, 11, 273.	3.3	3
13	Pectic polysaccharide from <i>Nelumbo nucifera</i> leaves promotes intestinal antioxidant defense <i>in vitro</i> and <i>in vivo</i> . Food and Function, 2021, 12, 10828-10841.	4.6	18
14	Spherical Micelles with Nonspherical Cores: Effect of Chain Packing on the Micellar Shape. Macromolecules, 2020, 53, 10686-10698.	4.8	4
15	Analysis of total microcystins and nodularins by oxidative cleavage of their ADMAdda, DMAdda, and Adda moieties. Analytica Chimica Acta: X, 2020, 6, 100060.	1.0	5
16	The role of 44-methylgambierone in ciguatera fish poisoning: Acute toxicity, production by marine microalgae and its potential as a biomarker for Gambierdiscus spp Harmful Algae, 2020, 97, 101853.	4.8	25
17	Bioactive Metabolites of Marine Origin Have Unusual Effects on Model Membrane Systems. Marine Drugs, 2020, 18, 125.	4.6	1
18	Structural features of pectic polysaccharides from stems of two species of Radix Codonopsis and their antioxidant activities. International Journal of Biological Macromolecules, 2020, 159, 704-713.	7.5	48

#	Article	IF	CITATIONS
19	44-Methylgambierone, a new gambierone analogue isolated from Gambierdiscus australes. Tetrahedron Letters, 2019, 60, 621-625.	1.4	34
20	Nuclear Magnetic Resonance Spectroscopy to Identify Metabolite Biomarkers of Nonresponsiveness to Targeted Therapy in Glioblastoma Tumor Stem Cells. Journal of Proteome Research, 2019, 18, 2012-2020.	3.7	6
21	Characterization of Inulin-Type Fructan from Platycodon grandiflorus and Study on Its Prebiotic and Immunomodulating Activity. Molecules, 2019, 24, 1199.	3.8	28
22	Dehydroicetexanes in sediments and crude oils: Possible markers for Cupressoideae. Organic Geochemistry, 2019, 129, 14-23.	1.8	6
23	The edible mushroom Albatrellus ovinus contains a α-l-fuco-α-d-galactan, α-d-glucan, a branched (1 â†' 6)-β-d-glucan and a branched (1 â†' 3)-β-d-glucan. Carbohydrate Research, 2019, 471, 28-38.	2.3	23
24	Identification of 21,22-Dehydroazaspiracids in Mussels (<i>Mytilus edulis</i>) and in Vitro Toxicity of Azaspiracid-26. Journal of Natural Products, 2018, 81, 885-893.	3.0	25
25	Propionate enters GABAergic neurons, inhibits GABA transaminase, causes GABA accumulation and lethargy in a model of propionic acidemia. Biochemical Journal, 2018, 475, 749-758.	3.7	29
26	Structural characterization of bioactive heteropolysaccharides from the medicinal fungus Inonotus obliquus (Chaga). Carbohydrate Polymers, 2018, 185, 27-40.	10.2	48
27			

#	Article	IF	CITATIONS
37	Unusual hexacyclic oleananes in Late Cretaceous/Tertiary terrigenous oils: NMR characterisation of the major hexacyclic oleanane in Niger Delta oil. Organic Geochemistry, 2016, 101, 196-206.	1.8	7
38	Identification of a Novel Series of Benzohopanes and Their Geochemical Significance. Energy & Samp; Fuels, 2016, 30, 5563-5575.	5.1	16
39	Characterization of Deoxynivalenol–Glutathione Conjugates Using Nuclear Magnetic Resonance Spectroscopy and Liquid Chromatography–High-Resolution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2016, 64, 6903-6910.	5. 2	16
40	Preparation and Characterization of Cysteine Adducts of Deoxynivalenol. Journal of Agricultural and Food Chemistry, 2016, 64, 4777-4785.	5.2	12
41	Structure Elucidation, Relative LC–MS Response and In Vitro Toxicity of Azaspiracids 7 – 10 Isolated from Mussels (<i>Mytilus edulis</i>). Journal of Agricultural and Food Chemistry, 2015, 63, 5083-5091.	5.2	38
42	Uptake and metabolism of fructose by rat neocortical cells <i>in vivo</i> and by isolated nerve terminals <i>in vitro</i> . Journal of Neurochemistry, 2015, 133, 572-581.	3.9	29
43	Nucleophilic Addition of Thiols to Deoxynivalenol. Journal of Agricultural and Food Chemistry, 2015, 63, 7556-7566.	5.2	26
44	Urinary Metabolite Profiles in Premature Infants Show Early Postnatal Metabolic Adaptation and Maturation. Nutrients, 2014, 6, 1913-1930.	4.1	40
45	Isolation, Structure Elucidation, Relative LC-MS Response, and in Vitro Toxicity of Azaspiracids from the Dinoflagellate <i>Azadinium spinosum</i> . Journal of Natural Products, 2014, 77, 2465-2474.	3.0	46
46	Compound "J―in Late Cretaceous/Tertiary terrigenous oils revisited: Structure elucidation of a rearranged oleanane coeluting on GC with 18β(H)-oleanane. Organic Geochemistry, 2014, 77, 89-95.	1.8	14
47	A Gold Exchange: A Mechanistic Study of a Reversible, Formal Ethylene Insertion into a Gold(III)–Oxygen Bond. Journal of the American Chemical Society, 2014, 136, 10104-10115.	13.7	64
48	Pinnatoxin H: a new pinnatoxin analogue from a South China Sea Vulcanodinium rugosum isolate. Tetrahedron Letters, 2014, 55, 5508-5510.	1.4	39
49	Epimers of Azaspiracids: Isolation, Structural Elucidation, Relative LC-MS Response, and <i>in Vitro</i> Toxicity of 37- <i>epi</i> -Azaspiracid-1. Chemical Research in Toxicology, 2014, 27, 587-600.	3.3	36
50	Structural features and complement fixing activity of polysaccharides from Codonopsis pilosula Nannf. var. modesta L.T.Shen roots. Carbohydrate Polymers, 2014, 113, 420-429.	10.2	66
51	Characterisation and immunomodulating activities of exo-polysaccharides from submerged cultivation of Hypsizigus marmoreus. Food Chemistry, 2014, 163, 120-128.	8.2	19
52	Identification of microcystins in a Lake Victoria cyanobacterial bloom using LC–MS with thiol derivatization. Toxicon, 2013, 70, 21-31.	1.6	48
53	Structural Characterization of New Microcystins Containing Tryptophan and Oxidized Tryptophan Residues. Marine Drugs, 2013, 11, 3025-3045.	4.6	23
54	New labdane diterpenes from <i>Solidago canadensis </i> Natural Product Research, 2012, 26, 1348-1354.	1.8	7

#	Article	IF	CITATIONS
55	Thiol Derivatization for LC-MS Identification of Microcystins in Complex Matrices. Environmental Science & Environmental Scien	10.0	57
56	Identification of Early Fumonisin Biosynthetic Intermediates by Inactivation of the <i>FUM6</i> Fusarium verticillioides. Journal of Agricultural and Food Chemistry, 2012, 60, 10293-10301.	5.2	19
57	High sensitivity measurements of active oxysterols with automated filtration/filter backflush-solid phase extraction-liquid chromatography–mass spectrometry. Journal of Chromatography A, 2012, 1255, 291-297.	3.7	38
58	Metabolic Changes in Urine during and after Pregnancy in a Large, Multiethnic Population-Based Cohort Study of Gestational Diabetes. PLoS ONE, 2012, 7, e52399.	2.5	69
59	Isolation and structure elucidation of secopenitrem D, an indole alkaloid from Penicillium crustosum Thom. Toxicon, 2011, 57, 259-265.	1.6	17
60	Hedgehog antagonist cyclopamine isomerizes to less potent forms when acidified. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52, 707-713.	2.8	32
61	Hedgehog antagonists cyclopamine and dihydroveratramine can be mistaken for each other in Veratrum album. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 497-502.	2.8	7
62	A technique for the specific enrichment of citrulline-containing peptides. Analytical Biochemistry, 2010, 403, 43-51.	2.4	44
63	Isolation, Structural Determination and Acute Toxicity of Pinnatoxins E, F and G. Journal of Agricultural and Food Chemistry, 2010, 58, 6532-6542.	5.2	114
64	15-Lipoxygenase Inhibitory Effects of Prenylated Flavonoids from <i>Erythrina senegalensis</i> Medica, 2009, 75, 1168-1170.	1.3	19
65	A Structural Basis for the Reduced Toxicity of Dinophysistoxin-2. Chemical Research in Toxicology, 2009, 22, 1782-1786.	3.3	39
66	Templateâ€directed supramolecular assembly of a new type of nanoporous peptideâ€based material. Journal of Peptide Science, 2008, 14, 210-216.	1.4	12
67	Accumulation of ammonium in Norway spruce (Picea abies) seedlings measured by in vivo 14N-NMR. Journal of Experimental Botany, 2007, 58, 929-934.	4.8	18
68	Extraction of microalgal toxins by large-scale pumping of seawater in Spain and Norway, and isolation of okadaic acid and dinophysistoxin-2. Toxicon, 2007, 50, 960-970.	1.6	50
69	Cerebral metabolism of glucose and pyruvate in soman poisoning. NeuroToxicology, 2007, 28, 13-18.	3.0	10
70	Clarification of the C-35 Stereochemistries of Dinophysistoxin-1 and Dinophysistoxin-2 and Its Consequences for Binding to Protein Phosphatase. Chemical Research in Toxicology, 2007, 20, 868-875.	3.3	52
71	An alternative multiple-trapping LC-SPE-NMR system. Journal of Separation Science, 2007, 30, 322-328.	2.5	12
72	Identification of major metal complexing compounds in Blepharis aspera. Analytica Chimica Acta, 2007, 597, 24-31.	5.4	13

#	Article	IF	CITATIONS
73	Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic acidemia. Journal of Neurochemistry, 2007, 101, 806-814.	3.9	53
74	Synthesis of indolizine derivatives with selective antibacterial activity against Mycobacterium tuberculosis. European Journal of Pharmaceutical Sciences, 2007, 30, 26-35.	4.0	142
75	Antioxidant activity of O-protected derivatives of (-)-epigallocatechin-3-gallate: inhibition of soybean and rabbit 15-lipoxygenases. Arkivoc, 2007, 2007, 6-16.	0.5	2
76	Identification of Fatty Acid Esters of Pectenotoxin-2 Seco Acid in Blue Mussels (Mytilus edulis) from Ireland. Journal of Agricultural and Food Chemistry, 2006, 54, 5672-5678.	5.2	67
77	Thymidine secretion by hybridoma and myeloma cells. Biochemical and Biophysical Research Communications, 2006, 342, 221-226.	2.1	4
78	Isolation and identification of a cis-C8-diol-ester of okadaic acid from Dinophysis acuta in New Zealand. Toxicon, 2006, 48, 195-203.	1.6	36
79	Specific modification of peptide-bound citrulline residues. Analytical Biochemistry, 2006, 352, 68-76.	2.4	52
80	Controlling LC–SPE–NMR systems. Journal of Separation Science, 2006, 29, 582-589.	2.5	24
81	Indolizine 1-sulfonates as potent inhibitors of 15-lipoxygenase from soybeans. Bioorganic and Medicinal Chemistry, 2005, 13, 3127-3139.	3.0	95
82	Brain metabolism of exogenous pyruvate. Journal of Neurochemistry, 2005, 95, 284-293.	3.9	66
83	6-Substituted Purines as Inhibitors of 15-Lipoxygenase; a Structure-Activity Study. Archiv Der Pharmazie, 2005, 338, 159-166.	4.1	21
84	6-Cyclopropylpurines as Novel Potent Analogs of Cytokinins. Journal of Plant Growth Regulation, 2005, 24, 41-45.	5.1	4
85	Electrochemical studies of biologically active indolizines. Tetrahedron, 2005, 61, 4643-4656.	1.9	25
86	Evidence for numerous analogs of yessotoxin in Protoceratium reticulatum. Harmful Algae, 2005, 4, 1075-1091.	4.8	99
87	Prenylated flavonoids, monoterpenoid furanocoumarins and other constituents from the twigs of Dorstenia elliptica (Moraceae). Phytochemistry, 2004, 65, 221-226.	2.9	37
88	Antimycobacterial Activity of 1-Substituted Indolizines ChemInform, 2003, 34, no.	0.0	0
89	Antimycobacterial Activity of 1-Substituted Indolizines. Archiv Der Pharmazie, 2003, 336, 191-195.	4.1	61
90	Indolizines as novel potent inhibitors of 15-Lipoxygenase. Bioorganic and Medicinal Chemistry, 2003, 11, 5409-5415.	3.0	75

#	Article	IF	CITATIONS
91	Cytotoxic activity of 6-alkynyl- and 6-alkenylpurines. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 877-880.	2.2	34
92	Cytotoxic activity and synthesis of 6-alkenyl and 6-alkynylpurines. , 2003, , 125.		0
93	Cytotoxic and Antibacterial Activity of 2-Oxopurine Derivatives. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 567-569.	2.2	63
94	Antioxidant activity of synthetic cytokinin analogues: 6-alkynyl- and 6-alkenylpurines as novel 15-Lipoxygenase inhibitors. Bioorganic and Medicinal Chemistry, 2002, 10, 1581-1586.	3.0	49
95	Synthesis of 2-oxopurine adducts with structural resemblance to Efavirenz and DPC 961 as potential NNRT-inhibitors. Arkivoc, 2002, 2001, 35-45.	0.5	4
96	Synthesis of 6-substituted purin-2-ones with potential cytokinin activity. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1662-1672.	1.3	17
97	Synthesis of 5-Substituted Pyrrolo[1,2-b]pyridazines with Antioxidant Properties. Archiv Der Pharmazie, 2001, 334, 21-24.	4.1	29
98	Synthesis of 1-Substituted 7-Cyano-2,3-diphenylindolizines and Evaluation of Antioxidant Properties. European Journal of Organic Chemistry, 2000, 2000, 3763-3770.	2.4	104
99	An Improved Synthesis of Dialkylcyclopropenones. Synthetic Communications, 2000, 30, 1767-1777.	2.1	20
100	Secretion of Thymidine by Hybridoma Cells. , 2000, 486, 295-301.		1
101	Synthesis of 6-alkenyl- and 6-alkynylpurines with cytokinin activity. Tetrahedron, 1999, 55, 211-228.	1.9	61
102	Epimerization of benzo[a]pyrene-tetrols after acid hydrolysis, implications for determination of benzo[a]pyrene adducts in protein and DNA. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1999, 423, 47-54.	1.0	6
103	Addition and Cycloaddition to 2- and 8-Vinylpurines Acta Chemica Scandinavica, 1999, 53, 269-279.	0.7	23
104	Regiochemistry in the Pd-Mediated Coupling between 6,8-Dihalopurines and Organometallic Reagents Acta Chemica Scandinavica, 1999, 53, 366-372.	0.7	27
105	Inhibition of lipid peroxidation mediated by indolizines. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1829-1832.	2.2	55
106	Synthesis of 8-Halopurines by Reaction of Lithiated Purines with Appropriate Halogen Donors. Synthetic Communications, 1998, 28, 4303-4315.	2.1	20
107	Non-Stoichiometric LaVO3. I. Synthesis and Physical Properties Acta Chemica Scandinavica, 1998, 52, 1096-1103.	0.7	11
108	Conformations of 11- and 14-Membered Ring Monolactams Acta Chemica Scandinavica, 1998, 52, 1110-1115.	0.7	5

#	Article	IF	CITATIONS
109	Lewis acid mediated Diels-Alder reactions of 6-vinylpurines. Tetrahedron, 1997, 53, 1777-1786.	1.9	10
110	Addition of Nucleophiles to 6-Vinylpurines Acta Chemica Scandinavica, 1997, 51, 1116-1124.	0.7	22
111	Regiochemistry in Stille couplings of 2,6-dihalopurines. Tetrahedron, 1996, 52, 5625-5638.	1.9	82
112	Conformations and Conformational Processes of Undecylolactam. Magnetic Resonance in Chemistry, 1996, 34, 289-292.	1.9	3
113	Regiochemistry in addition of Grignard reagents to N,N′-dibenzylated 2-purinones. Tetrahedron, 1996, 52, 12979-12992.	1.9	9
114	Ether, Carbonate and Urethane Deoxynucleoside Derivatives as Prodrugs Acta Chemica Scandinavica, 1996, 50, 609-622.	0.7	9
115	Resolution of 2-Methylalkanoic Acids. Enantioselective Esterification with Long Chain Alcohols Catalysed by Candida rugosa Lipase Acta Chemica Scandinavica, 1996, 50, 666-671.	0.7	32
116	Conformations and conformational processes of pelargolactam. Magnetic Resonance in Chemistry, 1995, 33, 252-255.	1.9	3
117	Regioselective addition of Grignard reagents to a 2-oxopurinium salt. Tetrahedron, 1995, 51, 3655-3664.	1.9	14
118	Regioselective Pd-mediated coupling between 2,6-dichloropurines and organometallic reagents. Tetrahedron Letters, 1995, 36, 1945-1948.	1.4	42
119	6-Halopurines in palladium-catalyzed coupling with organotin and organozinc reagents. Tetrahedron, 1994, 50, 9743-9756.	1.9	91
120	Pd-Catalyzed Cycloisomerization to 1,2-Dialkylidenecycloalkanes. 2. Alternative Catalyst System. Journal of the American Chemical Society, 1994, 116, 4268-4278.	13.7	152
121	13C NMR Studies of Wheat Germ Agglutinin Interactions with N-Acetylglucosamine at a Magnetically Oriented Bilayer Surface. Biochemistry, 1994, 33, 10137-10148.	2.5	24
122	Conformations and conformational interconversions of enantholactam. Magnetic Resonance in Chemistry, 1993, 31, 855-858.	1.9	7
123	Low-temperature NMR of É>-caprolactam. Magnetic Resonance in Chemistry, 1993, 31, 51-53.	1.9	14
124	Regioselective Substitution in Triflyloxypyrimidines and Chloropyrimidines Using Zinc and Tin Reagents. Heterocycles, 1993, 35, 235.	0.7	18
125	Alkylation and Convalent Adduct Formation of 2-Oxopurine. Heterocycles, 1993, 36, 231.	0.7	8
126	Aryl- and alkynyltri-isopropoxytitanium reagents in regioselective carbon-carbon bond formation in azines. Tetrahedron, 1992, 48, 5647-5656.	1.9	12

#	Article	IF	CITATIONS
127	Regiochemistry and Stereochemistry in Pd(0)-Catalyzed Allylic Alkylation of Nucleoside Bases Acta Chemica Scandinavica, 1992, 46, 761-771.	0.7	41
128	The Effect of Hydrogen Bonding between Methyl-Substituted Phenols and Dipolar Aprotic Solvents on the Rate Constants for Protonation of Anthracene Anion Radical Acta Chemica Scandinavica, 1992, 46, 883-896.	0.7	19
129	A new palladium catalyst for intramolecular carbametalations of enynes. Tetrahedron Letters, 1989, 30, 651-654.	1.4	132
130	2-Phenylsulfonyl 1,3-dienes in asymmetric diels-alder reactions with chiral enamines and enol ethers. Tetrahedron Letters, 1989, 30, 5347-5348.	1.4	35
131	Sodium 2-Mercaptoethanesulfonate in Reversible Adduct Formation and Water Solubilization Acta Chemica Scandinavica, 1989, 43, 489-492.	0.7	8
132	Ethynyltriisopropoxytitanium reactions with pyrimidinones. Journal of Organometallic Chemistry, 1988, 338, 341-346.	1.8	12
133	Reductive cyclization of 1,6- and 1,7-enynes. Journal of the American Chemical Society, 1987, 109, $3161-3163$.	13.7	118
134	Tetraisopropoxyzirconium and tri-isopropoxyaluminium in regioselective reduction of pyrimidinones. Journal of the Chemical Society Perkin Transactions 1, 1986, , 849-850.	0.9	11
135	Organotin derivatives in the umpolung of 1,3-dithian-2-ylides to 1,3-dithian-2-ylium salts. Journal of Organometallic Chemistry, 1986, 303, 189-195.	1.8	9
136	Regioselectivity in reactions of alkynylmetal complexes with pyrimidinones. Journal of Organometallic Chemistry, 1985, 291, 139-144.	1.8	13
137	Regioselectivity in the reactions of aryltri-isopropoxytitanium with pyrimidinones Journal of the Chemical Society Perkin Transactions $1,1985,1997.$	0.9	9
138	Regioselectivity in the Reductive Formation of Dihydro-5-halo-2(1H)-pyrimidinones Acta Chemica Scandinavica, 1985, 39b, 195-201.	0.7	7
139	1,2,4-Triazin-3(2H)-ones in Covalent Adduct Formations Acta Chemica Scandinavica, 1985, 39b, 235-240.	0.7	6
140	Structure Investigations on Products from the Reaction of Organocopper, Organolithium and Organomagnesium Reagents with 2(1H)-Pyrimidinones Acta Chemica Scandinavica, 1985, 39b, 459-468.	0.7	16
141	Introduction of Carbon Substituents into Pyrimidines by Grignard Reagents Acta Chemica Scandinavica, 1983, 37b, 613-615.	0.7	9