Aleksandra KÅ,adna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6162324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radical Research, 2019, 53, 497-521.	1.5	145
2	The effect of thymol and its derivatives on reactions generating reactive oxygen species. Chemosphere, 2000, 41, 1059-1064.	4.2	125
3	Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein. Luminescence, 2005, 20, 81-89.	1.5	84
4	Scavenging effects of phenolic compounds on reactive oxygen species. Biopolymers, 2007, 86, 222-230.	1.2	58
5	Studies on the antioxidant properties of some phytoestrogens. Luminescence, 2016, 31, 1201-1206.	1.5	45
6	Evaluation of the antioxidant activity of tetracycline antibiotics <i>in vitro</i> . Luminescence, 2012, 27, 249-255.	1.5	37
7	Enhancing effect of melatonin on chemiluminescence accompanying decomposition of hydrogen peroxide in the presence of copper. Free Radical Biology and Medicine, 2003, 34, 1544-1554.	1.3	35
8	Reactivity of pyruvic acid and its derivatives towards reactive oxygen species. Luminescence, 2015, 30, 1153-1158.	1.5	30
9	Formation of active oxygen species during autoxidation of DOPA. Chemosphere, 1999, 39, 443-453.	4.2	20
10	Scavenging of reactive oxygen species by novel indolin-2-one and indoline-2-thione derivatives. Biopolymers, 2005, 78, 171-178.	1.2	19
11	Chemiluminescence investigations of antioxidative activities of some antibiotics against superoxide anion radical. Luminescence, 2011, 26, 598-603.	1.5	15
12	Characterization of the superoxide anion radical scavenging activity by tetracycline antibiotics in aprotic media. Luminescence, 2011, 26, 611-615.	1.5	15
13	Antioxidant activity of 4-flavonil-1,4-dihydropyridine derivatives. Biopolymers, 2001, 62, 163-167.	1.2	14
14	Superoxide anion radical scavenging property of catecholamines. Luminescence, 2013, 28, 450-455.	1.5	14
15	Scavenging of reactive oxygen species by some nonsteroidal anti-inflammatory drugs and fenofibrate. Biopolymers, 2006, 82, 99-105.	1.2	12
16	Scavenging of superoxide anion radical and hydroxyl radical by novel thiazolylâ€thiazolidineâ€2,4â€dione compounds. Luminescence, 2009, 24, 194-201.	1.5	12
17	Synthesis and <i>in vitro</i> antioxidant activity of new pyrimidin/benzothiazol-substituted piperazinyl flavones. Future Medicinal Chemistry, 2018, 10, 2293-2308.	1.1	11
18	Studies on the antioxidant activities of some new chromone compounds. Luminescence, 2014, 29, 846-853.	1.5	10

Aleksandra KÅ,adna

#	Article	IF	CITATIONS
19	Preparation and in vitro antioxidant activity of some novel flavone analogues bearing piperazine moiety. Bioorganic Chemistry, 2020, 95, 103513.	2.0	10
20	Radical scavenging ability of some compounds isolated from <i>Piper cubeba</i> towards free radicals. Luminescence, 2011, 26, 202-207.	1.5	9
21	Scavenging of hydroxyl radical by catecholamines. Luminescence, 2012, 27, 473-477.	1.5	8
22	Antioxidant Activities of Some New Chromonyl-2,4-Thiazolidinediones and Chromonyl-2,4-Imidazolidinediones Having Chromone Cores. Journal of Fluorescence, 2013, 23, 1319-1327.	1.3	8
23	Studies on the antioxidant activity of some thiazolidinedione, imidazolidinedione and rhodanine derivatives having a flavone core. Luminescence, 2014, 29, 1107-1112.	1.5	7
24	Radicalâ€scavenging activity of penicillin G, ampicillin, oxacillin, and dicloxacillin. Luminescence, 2017, 32, 434-442.	1.5	7
25	Synthesis and <i>in vitro</i> antioxidant activity study of some new piperazinyl flavone compounds. Luminescence, 2017, 32, 1431-1441.	1.5	6
26	Anti-oxidant and pro-oxidant behaviour of bucillamine. Luminescence, 2006, 21, 90-97.	1.5	5
27	Free radical scavenging abilities of flavonylâ€thiazolidineâ€2,4â€dione compounds. Luminescence, 2011, 26, 10-16.	1.5	3
28	Luminescence in the oxidation of isoproterenol by the superoxide anion radical in dimethyl sulfoxide. Toxicological and Environmental Chemistry, 1998, 67, 293-304.	0.6	2
29	Formation of singlet oxygen during farmorubicin oxidation. Chemosphere, 2001, 44, 1565-1571.	4.2	2
30	Prooxidant Actions of Isoproterenol and Dobutamine. Toxicological and Environmental Chemistry, 2002, 82, 113-128.	0.6	2
31	Prooxidant action of carazolol in the Fentonâ€like reaction. Luminescence, 2011, 26, 429-433.	1.5	2
32	Studies on the antioxidant activity of some chromonylrhodanine derivatives. Luminescence, 2015, 30, 556-563.	1.5	1
33	A Study on Synthesis and Antioxidant Activity Comparison of Novel Stilbenebenzamide Compounds. Medicinal Chemistry, 2021, 17, 533-544.	0.7	1
34	Inhibitory effect of some biological compounds on catecholamines peroxidation. Toxicological and Environmental Chemistry, 1998, 65, 135-144.	0.6	0
35	History of myopia research in Szczecin after World War II. Ophthalmology Journal, 2018, 3, 8-13.	0.1	0
36	History of epidemiological myopia research in Poland after World War II. Rossiiskii Oftal'mologicheskii Zhurnal, 2018, 11, 108-111.	0.1	0