
Michael D Henry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6162293/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5593-601.	3.3	1,774
2	Identification of -Dystroglycan as a Receptor for Lymphocytic Choriomeningitis Virus and Lassa Fever Virus. , 1998, 282, 2079-2081.		609
3	Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature, 2002, 418, 422-425.	13.7	532
4	Dystroglycan Is Essential for Early Embryonic Development: Disruption of Reichert's Membrane in Dag1-Null Mice. Human Molecular Genetics, 1997, 6, 831-841.	1.4	482
5	A Role for Dystroglycan in Basement Membrane Assembly. Cell, 1998, 95, 859-870.	13.5	367
6	Dystroglycan inside and out. Current Opinion in Cell Biology, 1999, 11, 602-607.	2.6	270
7	Maturation and Maintenance of the Neuromuscular Synapse. Neuron, 2000, 25, 279-293.	3.8	263
8	Disruption of Dag1 in Differentiated Skeletal Muscle Reveals a Role for Dystroglycan in Muscle Regeneration. Cell, 2002, 110, 639-648.	13.5	260
9	Dystroglycan: an extracellular matrix receptor linked to the cytoskeleton. Current Opinion in Cell Biology, 1996, 8, 625-631.	2.6	240
10	Unique Role of Dystroglycan in Peripheral Nerve Myelination, Nodal Structure, and Sodium Channel Stabilization. Neuron, 2003, 38, 747-758.	3.8	230
11	RhoA-Dependent Phosphorylation and Relocalization of ERM Proteins into Apical Membrane/Actin Protrusions in Fibroblasts. Molecular Biology of the Cell, 1998, 9, 403-419.	0.9	171
12	Distribution of Dystroglycan in Normal Adult Mouse Tissues. Journal of Histochemistry and Cytochemistry, 1998, 46, 449-457.	1.3	170
13	In vivo mouse studies with bioluminescence tomography. Optics Express, 2006, 14, 7801.	1.7	167
14	Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle?. Nature Reviews Urology, 2011, 8, 428-439.	1.9	165
15	Dystroglycan Is Selectively Associated with Inhibitory GABAergic Synapses But Is Dispensable for Their Differentiation. Journal of Neuroscience, 2002, 22, 4274-4285.	1.7	159
16	ZEB1 Enhances Transendothelial Migration and Represses the Epithelial Phenotype of Prostate Cancer Cells. Molecular Biology of the Cell, 2009, 20, 2207-2217.	0.9	158
17	A Prostate-Specific Membrane Antigen-Targeted Monoclonal Antibody–Chemotherapeutic Conjugate Designed for the Treatment of Prostate Cancer. Cancer Research, 2004, 64, 7995-8001.	0.4	154
18	Resistance to Fluid Shear Stress Is a Conserved Biophysical Property of Malignant Cells. PLoS ONE, 2012, 7, e50973.	1.1	140

#	Article	IF	CITATIONS
19	Dystroglycan in development and disease. Current Opinion in Cell Biology, 1998, 10, 594-601.	2.6	138
20	A role for dystroglycan in epithelial polarization: loss of function in breast tumor cells. Cancer Research, 2002, 62, 7102-9.	0.4	125
21	Loss of α-Dystroglycan Laminin Binding in Epithelium-derived Cancers Is Caused by Silencing of LARGE. Journal of Biological Chemistry, 2009, 284, 11279-11284.	1.6	96
22	Reduced expression of dystroglycan in breast and prostate cancer. Human Pathology, 2001, 32, 791-795.	1.1	93
23	Dystroglycan loss disrupts polarity and β-casein induction in mammary epithelial cells by perturbing laminin anchoring. Journal of Cell Science, 2006, 119, 4047-4058.	1.2	90
24	Interdomain Interactions of Radixin in Vitro. Journal of Biological Chemistry, 1995, 270, 25324-25327.	1.6	83
25	Dystroglycan binding to laminin α1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro. Differentiation, 2001, 69, 121-134.	1.0	72
26	Assessing Tumor Growth and Distribution in a Model of Prostate Cancer Metastasis using Bioluminescence Imaging. Clinical and Experimental Metastasis, 2005, 22, 674-684.	1.7	69
27	ZEB1 Coordinately Regulates Laminin-332 and β4 Integrin Expression Altering the Invasive Phenotype of Prostate Cancer Cells*. Journal of Biological Chemistry, 2010, 285, 33940-33948.	1.6	68
28	Transcriptome-wide Landscape of Pre-mRNA Alternative Splicing Associated with Metastatic Colonization. Molecular Cancer Research, 2015, 13, 305-318.	1.5	63
29	Cancer Cells Resist Mechanical Destruction in Circulation via RhoA/Actomyosin-Dependent Mechano-Adaptation. Cell Reports, 2020, 30, 3864-3874.e6.	2.9	61
30	Loss of <i>SOD3</i> (EcSOD) Expression Promotes an Aggressive Phenotype in Human Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2015, 21, 1741-1751.	3.2	58
31	α3β1 Integrin Suppresses Prostate Cancer Metastasis via Regulation of the Hippo Pathway. Cancer Research, 2016, 76, 6577-6587.	0.4	55
32	Integrin α3β1 Can Function to Promote Spontaneous Metastasis and Lung Colonization of Invasive Breast Carcinoma. Molecular Cancer Research, 2014, 12, 143-154.	1.5	53
33	Prostate tumor cell exosomes containing hyaluronidase Hyal1 stimulate prostate stromal cell motility by engagement of FAK-mediated integrin signaling. Matrix Biology, 2019, 78-79, 165-179.	1.5	49
34	Disruption of perlecan binding and matrix assembly by post-translational or genetic disruption of dystroglycan function. FEBS Letters, 2005, 579, 4792-4796.	1.3	48
35	Slow Disease Progression in a C57BL/6 Pten-Deficient Mouse Model of Prostate Cancer. American Journal of Pathology, 2011, 179, 502-512.	1.9	46
36	Eradication of Metastatic Renal Cell Carcinoma after Adenovirus-Encoded TNF-Related Apoptosis-Inducing Ligand (TRAIL)/CpG Immunotherapy. PLoS ONE, 2012, 7, e31085.	1.1	46

#	Article	IF	CITATIONS
37	Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study. Cell Health and Cytoskeleton, 2015, 7, 25.	0.7	46
38	Overview of bioluminescence tomography-a new molecular imaging modality. Frontiers in Bioscience - Landmark, 2008, 13, 1281.	3.0	46
39	Functional Genomic Screening Independently Identifies CUL3 as a Mediator of Vemurafenib Resistance via Src-Rac1 Signaling Axis. Frontiers in Oncology, 2020, 10, 442.	1.3	45
40	A Critical Role of Gβγ in Tumorigenesis and Metastasis of Breast Cancer. Journal of Biological Chemistry, 2011, 286, 13244-13254.	1.6	43
41	Biomechanics of the Circulating Tumor Cell Microenvironment. Advances in Experimental Medicine and Biology, 2018, 1092, 209-233.	0.8	41
42	An inducible model of abacterial prostatitis induces antigen specific inflammatory and proliferative changes in the murine prostate. Prostate, 2011, 71, 1139-1150.	1.2	40
43	Chemotherapeutic Agents Up-regulate the Cytomegalovirus Promoter: Implications for Bioluminescence Imaging of Tumor Response to Therapy. Cancer Research, 2007, 67, 10445-10454.	0.4	39
44	Loss of LARGE2 Disrupts Functional Glycosylation of α-Dystroglycan in Prostate Cancer. Journal of Biological Chemistry, 2013, 288, 2132-2142.	1.6	33
45	Targeting epigenetics for treatment of BRAF mutated metastatic melanoma with decitabine in combination with vemurafenib: A phase lb study. Oncotarget, 2017, 8, 89182-89193.	0.8	33
46	Integrin α3β1 regulates tumor cell responses to stromal cells and can function to suppress prostate cancer metastatic colonization. Clinical and Experimental Metastasis, 2013, 30, 541-552.	1.7	31
47	Bone-specific growth inhibition of prostate cancer metastasis by Atrasentan. Cancer Biology and Therapy, 2010, 9, 607-614.	1.5	29
48	Down regulation of CSL activity inhibits cell proliferation in prostate and breast cancer cells. Journal of Cellular Biochemistry, 2011, 112, 2340-2351.	1.2	26
49	The ARF Tumor Suppressor Inhibits Tumor Cell Colonization Independent of p53 in a Novel Mouse Model of Pancreatic Ductal Adenocarcinoma Metastasis. Molecular Cancer Research, 2011, 9, 867-877.	1.5	26
50	High content screening identifies monensin as an EMT-selective cytotoxic compound. Scientific Reports, 2019, 9, 1200.	1.6	25
51	Spiculated periosteal response induced by intraosseous injection of 22Rv1 prostate cancer cells resembles subset of bone metastases in prostate cancer patients. Prostate, 2005, 65, 347-354.	1.2	23
52	Assessing siRNA Pharmacodynamics in a Luciferase-expressing Mouse. Molecular Therapy, 2008, 16, 1995-2001.	3.7	21
53	Natural Products Discovered in a High-Throughput Screen Identified as Inhibitors of RGS17 and as Cytostatic and Cytotoxic Agents for Lung and Prostate Cancer Cell Lines. Journal of Natural Products, 2017, 80, 1992-2000.	1.5	21
54	Downregulation of dystroglycan glycosyltransferases LARGE2 and ISPD associate with increased mortality in clear cell renal cell carcinoma. Molecular Cancer, 2015, 14, 141.	7.9	20

#	Article	IF	CITATIONS
55	Targeting geranylgeranylation reduces adrenal gland tumor burden in a murine model of prostate cancer metastasis. Clinical and Experimental Metastasis, 2015, 32, 555-566.	1.7	19
56	Intestinal Helminths Regulate Lethal Acute Graft-versus-Host Disease and Preserve the Graft-versus-Tumor Effect in Mice. Journal of Immunology, 2015, 194, 1011-1020.	0.4	16
57	Endothelin-1 inhibits prostate cancer growth in vivo through vasoconstriction of tumor-feeding arterioles. Cancer Biology and Therapy, 2009, 8, 720-729.	1.5	15
58	The glycosyltransferase LARGE2 is repressed by Snail and ZEB1 in prostate cancer. Cancer Biology and Therapy, 2015, 16, 125-136.	1.5	15
59	Analysis of the Role of Dystroglycan in Early Postimplantation Mouse Developmenta. Annals of the New York Academy of Sciences, 1998, 857, 256-259.	1.8	14
60	CD151 promotes α3β1 integrin-dependent organization of carcinoma cell junctions and restrains collective cell invasion. Cancer Biology and Therapy, 2015, 16, 1626-1640.	1.5	14
61	A Trp53fl/flPtenfl/fl mouse model of undifferentiated pleomorphic sarcoma mediated by adeno-Cre injection and in vivo bioluminescence imaging. PLoS ONE, 2017, 12, e0183469.	1.1	13
62	Pharmacological ascorbate inhibits pancreatic cancer metastases via a peroxide-mediated mechanism. Scientific Reports, 2020, 10, 17649.	1.6	13
63	Dystroglycan is not required for maintenance of the luminal epithelial basement membrane or cell polarity in the mouse prostate. Prostate, 2010, 70, 777-787.	1.2	12
64	Vinculin Activators Target Integrins from Within the Cell to Increase Melanoma Sensitivity to Chemotherapy. Molecular Cancer Research, 2011, 9, 712-723.	1.5	10
65	Impact of Prostate Inflammation on Lesion Development in the POET3+ Pten Mouse Model of Prostate Carcinogenesis. American Journal of Pathology, 2014, 184, 3176-3191.	1.9	10
66	Inhibiting G protein βγ signaling blocks prostate cancer progression and enhances the efficacy of paclitaxel. Oncotarget, 2017, 8, 36067-36081.	0.8	10
67	Individualization of Adjuvant Therapy After Radical Prostatectomy for Clinically Localized Prostate Cancer: Current Status and FutureADirections. Clinical Genitourinary Cancer, 2016, 14, 12-21.	0.9	7
68	Melanoma Brain Metastases in the Era of Targeted Therapy and Checkpoint Inhibitor Therapy. Cancers, 2021, 13, 1489.	1.7	7
69	Prolyl-4-Hydroxylase 3 (PHD3) Expression Is Downregulated during Epithelial-to-Mesenchymal Transition. PLoS ONE, 2013, 8, e83021.	1.1	6
70	Chronic Chlorpyrifos Exposure Does Not Promote Prostate Cancer in Prostate Specific PTEN Mutant Mice. Journal of Environmental Pathology, Toxicology and Oncology, 2013, 32, 29-39.	0.6	5
71	Locally invasive, castrate-resistant prostate cancer in a Pten/Trp53 double knockout mouse model of prostate cancer monitored with non-invasive bioluminescent imaging. PLoS ONE, 2020, 15, e0232807.	1.1	4
72	Survival of the resilient: Mechano-adaptation of circulating tumor cells to fluid shear stress. Molecular and Cellular Oncology, 2020, 7, 1766338.	0.3	4

#	Article	IF	CITATIONS
73	Development and comparison of novel bioluminescent mouse models of pancreatic neuroendocrine neoplasm metastasis. Scientific Reports, 2021, 11, 10252.	1.6	4
74	Targeting Phenotypic Plasticity in Prostate Cancer. Current Molecular Biology Reports, 2017, 3, 183-196.	0.8	3
75	A model for the detection of pancreatic ductal adenocarcinoma circulating tumor cells. Journal of Biological Methods, 2018, 5, e97.	1.0	3
76	Modeling the Effects of Hemodynamic Stress on Circulating Tumor Cells using a Syringe and Needle. Journal of Visualized Experiments, 2021, , .	0.2	0
77	Intestinal Helminth Colonization Regulates Lethal Graft Versus Host Disease and Preserves Graft Versus Tumor in Bone Marrow Transplanted Mice. Blood, 2014, 124, 1102-1102.	0.6	0