Jose M Munita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6161733/publications.pdf

Version: 2024-02-01

70 papers

4,837 citations

28 h-index 123420 61 g-index

78 all docs 78 docs citations

78 times ranked 6620 citing authors

#	Article	IF	CITATIONS
1	Real-World Performance of Susceptibility Testing for Ceftolozane/Tazobactam against Non-Carbapenemase-Producing Carbapenem-Resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0165721.	3.2	3
2	Contemporary Clinical and Molecular Epidemiology of Vancomycin-Resistant Enterococcal Bacteremia: A Prospective Multicenter Cohort Study (VENOUS I). Open Forum Infectious Diseases, 2022, 9, ofab616.	0.9	18
3	New Perspectives on Antimicrobial Agents: Long-Acting Lipoglycopeptides. Antimicrobial Agents and Chemotherapy, 2022, 66, e0261420.	3.2	19
4	Antimicrobial Susceptibility Testing for Enterococci. Journal of Clinical Microbiology, 2022, 60, .	3.9	11
5	Comparative evaluation of four rapid SARS-CoV-2 antigen detection tests using universal transport medium. Travel Medicine and Infectious Disease, 2021, 39, 101942.	3.0	47
6	Higher Prevalence of Extended-Spectrum Cephalosporin-Resistant Enterobacterales in Dogs Attended for Enteric Viruses in Brazil Before and After Treatment with Cephalosporins. Antibiotics, 2021, 10, 122.	3.7	11
7	Evaluation of two fluorescence immunoassays for the rapid detection of SARS-CoV-2 antigenâ€"new tool to detect infective COVID-19 patients. PeerJ, 2021, 9, e10801.	2.0	19
8	ESBL-Producing EscherichiaÂcoli Carrying CTX-M Genes Circulating among Livestock, Dogs, and Wild Mammals in Small-Scale Farms of Central Chile. Antibiotics, 2021, 10, 510.	3.7	34
9	Selective digestive decontamination with oral colistin plus gentamicin for persistent bacteraemia caused by non-carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae in a neutropenic patient. JAC-Antimicrobial Resistance, 2021, 3, dlab079.	2.1	2
10	Risk factors associated with faecal carriage of extended-spectrum cephalosporin-resistant Escherichia coli among dogs in Southeast Brazil. Preventive Veterinary Medicine, 2021, 190, 105316.	1.9	16
11	Longitudinal assessment of SARS-CoV-2 IgG seroconversionamong front-line healthcare workers during the first wave of the Covid-19 pandemic at a tertiary-care hospital in Chile. BMC Infectious Diseases, 2021, 21, 478.	2.9	19
12	Isolation of Ciprofloxacin and Ceftazidime-Resistant Enterobacterales From Vegetables and River Water Is Strongly Associated With the Season and the Sample Type. Frontiers in Microbiology, 2021, 12, 604567.	3.5	15
13	Antimicrobial resistance in wildlife and in the built environment in a wildlife rehabilitation center. One Health, 2021, 13, 100298.	3.4	20
14	Covid-19 in South America: clinical and epidemiological characteristics among 381 patients during the early phase of the pandemic in Santiago, Chile. BMC Infectious Diseases, 2020, 20, 955.	2.9	10
15	Colonization With Antibiotic-Resistant Gram-Negative Bacteria in Population-Based Hospital and Community Settings in Chile. Infection Control and Hospital Epidemiology, 2020, 41, s175-s176.	1.8	2
16	Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. International Journal of Infectious Diseases, 2020, 99, 328-333.	3.3	297
17	Detection of heterogeneous vancomycin intermediate resistance in MRSA isolates from Latin America. Journal of Antimicrobial Chemotherapy, 2020, 75, 2424-2431.	3.0	8
18	Genomic Epidemiology of Vancomycin-Resistant Enterococcus faecium (VREfm) in Latin America: Revisiting The Global VRE Population Structure. Scientific Reports, 2020, 10, 5636.	3.3	39

#	Article	IF	Citations
19	Socioeconomic factors associated with antimicrobial resistance of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli in Chilean hospitals (2008–2017). Revista Panamericana De Salud Publica/Pan American Journal of Public Health, 2020, 44, 1.	1.1	13
20	Impact of Antimicrobial Stewardship Programs in Latin American Adult Intensive Care Units: PROA-LATAM Project. Infection Control and Hospital Epidemiology, 2020, 41, s520-s520.	1.8	0
21	A One Health – One World initiative to control antibiotic resistance: A Chile - Sweden collaboration. One Health, 2019, 8, 100100.	3.4	14
22	A Multicenter Study To Evaluate Ceftaroline Breakpoints: Performance in an Area with High Prevalence of Methicillin-Resistant Staphylococcus aureus Sequence Type 5 Lineage. Journal of Clinical Microbiology, 2019, 57, .	3.9	5
23	Higher MICs (>2 mg/L) Predict 30-Day Mortality in Patients With Lower Respiratory Tract Infections Caused by Multidrug- and Extensively Drug-Resistant Pseudomonas aeruginosa Treated With Ceftolozane/Tazobactam. Open Forum Infectious Diseases, 2019, 6, ofz416.	0.9	22
24	Novel Strategies for the Management of Vancomycin-Resistant Enterococcal Infections. Current Infectious Disease Reports, 2019, 21, 22.	3.0	27
25	1214. High Frequency of Genes Encoding Resistance to Heavy Metals in Methicillin-Resistant Staphylococcus aureus (MRSA) Endemic Lineages From South America. Open Forum Infectious Diseases, 2018, 5, S368-S368.	0.9	0
26	A Natural Deep Eutectic Solvent Formulated to Stabilize \hat{l}^2 -Lactam Antibiotics. Scientific Reports, 2018, 8, 14900.	3.3	58
27	Influence of Inoculum Effect on the Efficacy of Daptomycin Monotherapy and in Combination with \hat{l}^2 -Lactams against Daptomycin-Susceptible Enterococcus faecium Harboring LiaSR Substitutions. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	34
28	The Cefazolin Inoculum Effect Is Associated With Increased Mortality in Methicillin-Susceptible Staphylococcus aureus Bacteremia. Open Forum Infectious Diseases, 2018, 5, ofy123.	0.9	72
29	Ceftaroline-Resistant, Daptomycin-Tolerant, and Heterogeneous Vancomycin-Intermediate Methicillin-Resistant Staphylococcus aureus Causing Infective Endocarditis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	24
30	Whole-Genome Sequencing Accurately Identifies Resistance to Extended-Spectrum \hat{l}^2 -Lactams for Major Gram-Negative Bacterial Pathogens. Clinical Infectious Diseases, 2017, 65, 738-745.	5.8	56
31	Gram-Positive Bacterial Infections: Research Priorities, Accomplishments, and Future Directions of the Antibacterial Resistance Leadership Group. Clinical Infectious Diseases, 2017, 64, S24-S29.	5.8	48
32	Multicenter Evaluation of Ceftolozane/Tazobactam for Serious Infections Caused by Carbapenem-Resistant Pseudomonas aeruginosa. Clinical Infectious Diseases, 2017, 65, 158-161.	5.8	123
33	A Prospective Cohort Multicenter Study of Molecular Epidemiology and Phylogenomics of Staphylococcus aureus Bacteremia in Nine Latin American Countries. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	95
34	Daptomycin non-susceptible Enterococcus faecium in leukemia patients: Role of prior daptomycin exposure. Journal of Infection, 2017, 74, 243-247.	3.3	26
35	AÂWhole Genome Sequencing (WGS) Approach to Predict Daptomycin (DAP) Susceptibility of Enterococcus faecium. Open Forum Infectious Diseases, 2017, 4, S602-S602.	0.9	0
36	A Prospective Study of Enterococcal Bacteremia in Cancer vs Non-Cancer Populations: One Disease, Two Tales. Open Forum Infectious Diseases, 2017, 4, S546-S546.	0.9	0

#	Article	lF	Citations
37	Ceftolozane-Tazobactam Resistance in Multidrug-Resistant Pseudomonas aeruginosa Isolates Not Associated with AmpC Activity. Open Forum Infectious Diseases, 2017, 4, S127-S128.	0.9	1
38	The Growing Threat of Antimicrobial Resistance. Texas Medicine, 2017, 113, 48-52.	0.0	4
39	Ceftolozane-Tazobactam (C/T) for Severe Infections Caused by Carbapenem-Resistant Pseudomonas aeruginosa. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
40	Previous Daptomycin Exposure Predicts Daptomycin Non-Susceptible Enterococcus faecium Bloodstream Infections in Adult Leukemia Patients. Open Forum Infectious Diseases, 2016, 3, .	0.9	0
41	Mechanisms of Antibiotic Resistance. Microbiology Spectrum, 2016, 4, .	3.0	1,521
42	Influence of Minimum Inhibitory Concentration in Clinical Outcomes of <i>Enterococcus faecium </i> Bacteremia Treated With Daptomycin: Is it Time to Change the Breakpoint?. Clinical Infectious Diseases, 2016, 62, 1514-1520.	5.8	86
43	Fungal empyema thoracis in cancer patients. Journal of Infection, 2016, 72, 615-621.	3.3	14
44	Mechanisms of drug resistance: daptomycin resistance. Annals of the New York Academy of Sciences, 2015, 1354, 32-53.	3.8	181
45	Methicillin-Susceptible, Vancomycin-Resistant <i>Staphylococcus aureus</i> , Brazil. Emerging Infectious Diseases, 2015, 21, 1844-1848.	4.3	38
46	Evolving Resistance Among Gram-positive Pathogens. Clinical Infectious Diseases, 2015, 61, S48-S57.	5.8	88
47	Deletion of <i>liaR</i> Reverses Daptomycin Resistance in Enterococcus faecium Independent of the Genetic Background. Antimicrobial Agents and Chemotherapy, 2015, 59, 7327-7334.	3.2	41
48	A liaR Deletion Restores Susceptibility to Daptomycin and Antimicrobial Peptides in Multidrug-Resistant Enterococcus faecalis. Journal of Infectious Diseases, 2015, 211, 1317-1325.	4.0	80
49	Endocarditis Caused by MRSA With Reduced Susceptibility to Vancomycin and Daptomycin and Resistance to Ceftaroline: Treatment Approach and Evidence of Patient to Patient Transmission. Open Forum Infectious Diseases, 2015, 2, .	0.9	0
50	Fungal Empyema Thoracis in Cancer Patients. Open Forum Infectious Diseases, 2015, 2, .	0.9	0
51	Influence of MIC in Clinical Outcomes of Enterococcus faecium Bacteremia Treated With Daptomycin: Is It Time to Change the Breakpoint?. Open Forum Infectious Diseases, 2015, 2, .	0.9	0
52	Transferable Vancomycin Resistance in a Community-Associated MRSA Lineage. New England Journal of Medicine, 2014, 370, 1524-1531.	27.0	136
53	What's New in the Treatment of Enterococcal Endocarditis?. Current Infectious Disease Reports, 2014, 16, 431.	3.0	41
54	Daptomycin for the treatment of bacteraemia due to vancomycin-resistant enterococci. International Journal of Antimicrobial Agents, 2014, 44, 387-395.	2.5	37

#	Article	IF	Citations
55	Failure of High-Dose Daptomycin for Bacteremia Caused by Daptomycin-Susceptible Enterococcus faecium Harboring LiaSR Substitutions. Clinical Infectious Diseases, 2014, 59, 1277-1280.	5.8	60
56	Mechanisms of antibiotic resistance in enterococci. Expert Review of Anti-Infective Therapy, 2014, 12, 1221-1236.	4.4	507
57	Whole-Genome Analyses of Enterococcus faecium Isolates with Diverse Daptomycin MICs. Antimicrobial Agents and Chemotherapy, 2014, 58, 4527-4534.	3.2	119
58	Daptomycin-Resistant Enterococcus faecalis Diverts the Antibiotic Molecule from the Division Septum and Remodels Cell Membrane Phospholipids. MBio, 2013, 4, .	4.1	152
59	A <i>liaF</i> Codon Deletion Abolishes Daptomycin Bactericidal Activity against Vancomycin-Resistant Enterococcus faecalis. Antimicrobial Agents and Chemotherapy, 2013, 57, 2831-2833.	3.2	61
60	Whole-Genome Analysis of a Daptomycin-Susceptible Enterococcus faecium Strain and Its Daptomycin-Resistant Variant Arising during Therapy. Antimicrobial Agents and Chemotherapy, 2013, 57, 261-268.	3.2	101
61	Dissecting the Mechanisms of Linezolid Resistance in a Drosophila melanogaster Infection Model of Staphylococcus aureus. Journal of Infectious Diseases, 2013, 208, 83-91.	4.0	10
62	Editorial Commentary: Enterococcus faecalisInfective Endocarditis: Is It Time to Abandon Aminoglycosides?. Clinical Infectious Diseases, 2013, 56, 1269-1272.	5.8	16
63	Resistencia a antibióticos de última lÃnea en cocos Gram positivos: la era posterior a la vancomicina. Biomedica, 2013, 34, 191.	0.7	16
64	Correlation between Mutations inliaFSRof Enterococcus faecium and MIC of Daptomycin: Revisiting Daptomycin Breakpoints. Antimicrobial Agents and Chemotherapy, 2012, 56, 4354-4359.	3.2	103
65	Enterococcal Endocarditis: Can We Win the War?. Current Infectious Disease Reports, 2012, 14, 339-349.	3.0	46
66	Bacteriemia en daño hepático crónico. Revista Chilena De Infectologia, 2011, 28, 35-39.	0.1	5
67	Pandemic influenza A (H1N1) 2009 with neurological manifestations, a case series. Influenza and Other Respiratory Viruses, 2010, 4, 117-120.	3.4	19
68	CirugÃa pulmonar en tuberculosis. Revista Medica De Chile, 2009, 137, .	0.2	1
69	Staphylococcus aureus comunitario resistente a cloxacilina: Comunicaci $ ilde{A}^3$ n de los primeros cinco casos descritos en Chile. Revista Medica De Chile, 2008, 136, .	0.2	10
70	Mechanisms of Antibiotic Resistance. , 0, , 481-511.		122