## **Changmin Hou**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6161642/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Moisture-stimulated reversible thermochromic CsPbI3-xBrx films: In-situ spectroscopic-resolved structure and optical properties. Applied Surface Science, 2022, 573, 151484.                                       | 6.1  | 6         |
| 2  | Boosting photocatalytic hydrogen evolution: Orbital redistribution of ultrathin ZnIn2S4 nanosheets via atomic defects. Applied Catalysis B: Environmental, 2022, 305, 121007.                                      | 20.2 | 61        |
| 3  | Ni, In co-doped ZnIn2S4 for efficient hydrogen evolution: Modulating charge flow and balancing H<br>adsorption/desorption. Applied Catalysis B: Environmental, 2022, 310, 121337.                                  | 20.2 | 55        |
| 4  | Partial sulfidation for constructing Cu <sub>2</sub> O–CuS heterostructures realizing enhanced electrochemical glucose sensing. New Journal of Chemistry, 2021, 45, 7204-7209.                                     | 2.8  | 11        |
| 5  | Stable Bimetallene Hydride Boosts Anodic CO Tolerance of Fuel Cells. ACS Energy Letters, 2021, 6, 1912-1919.                                                                                                       | 17.4 | 48        |
| 6  | In-Situ thermochromic mechanism of Spin-Coated VO2 film. Applied Surface Science, 2021, 564, 150441.                                                                                                               | 6.1  | 8         |
| 7  | Rapid large-scale synthesis of ultrathin NiFe-layered double hydroxide nanosheets with tunable structures as robust oxygen evolution electrocatalysts. RSC Advances, 2021, 11, 37624-37630.                        | 3.6  | 7         |
| 8  | Oxygen vacancies enhancing acetone-sensing performance. Materials Today Chemistry, 2020, 18, 100372.                                                                                                               | 3.5  | 7         |
| 9  | Reversible thermochromic property of Cr, Mn, Fe, Co-doped<br>Ca <sub>14</sub> Zn <sub>6</sub> Ga <sub>10</sub> O <sub>35</sub> . Journal of Materials Chemistry C,<br>2020, 8, 9615-9624.                          | 5.5  | 11        |
| 10 | Carbon inserted defect-rich MoS2â^'X nanosheets@CdSnanospheres for efficient photocatalytic<br>hydrogen evolution under visible light irradiation. Journal of Colloid and Interface Science, 2020,<br>569, 89-100. | 9.4  | 34        |
| 11 | Cu Nanoparticles Embedded in <scp>Nâ€Đoped</scp> Carbon Materials for Oxygen Reduction Reaction.<br>Chinese Journal of Chemistry, 2020, 38, 941-946.                                                               | 4.9  | 42        |
| 12 | Promotion of the water oxidation activity of iridium oxide by a nitrogen coordination strategy.<br>Chemical Communications, 2020, 56, 14909-14912.                                                                 | 4.1  | 2         |
| 13 | Rapid room-temperature fabrication of ultrathin Ni(OH)2 nanoflakes with abundant edge sites for efficient urea oxidation. Applied Catalysis B: Environmental, 2019, 259, 118020.                                   | 20.2 | 108       |
| 14 | Commercial-Level Energy Storage via Free-Standing Stacking Electrodes. Matter, 2019, 1, 1694-1709.                                                                                                                 | 10.0 | 19        |
| 15 | Charge transfer-induced O p-band center shift for an enhanced OER performance in<br>LaCoO <sub>3</sub> film. CrystEngComm, 2019, 21, 1534-1538.                                                                    | 2.6  | 17        |
| 16 | Catalysis of Oxygen Reduction Reaction on Atomically Dispersed Copper- and Nitrogen-Codoped<br>Graphene. ACS Applied Energy Materials, 2019, 2, 4755-4762.                                                         | 5.1  | 33        |
| 17 | A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials. Materials Today Energy, 2019, 12, 239-249.                 | 4.7  | 51        |
| 18 | Ultrathin nickel hydroxide nanosheets with a porous structure for efficient electrocatalytic urea oxidation. Journal of Materials Chemistry A, 2019, 7, 26364-26370.                                               | 10.3 | 62        |

CHANGMIN HOU

| #  | Article                                                                                                                                                                                                                   | IF                     | CITATIONS         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------|
| 19 | High-performance Fe–Co–Sn oxide electrocatalysts for oxygen evolution reaction. Materials Today<br>Energy, 2019, 14, 100364.                                                                                              | 4.7                    | 7                 |
| 20 | Oxygen vacancies confined in ultrathin nickel oxide nanosheets for enhanced electrocatalytic methanol oxidation. Applied Catalysis B: Environmental, 2019, 244, 1096-1102.                                                | 20.2                   | 180               |
| 21 | Iridium-Triggered Phase Transition of MoS <sub>2</sub> Nanosheets Boosts Overall Water Splitting in<br>Alkaline Media. ACS Energy Letters, 2019, 4, 368-374.                                                              | 17.4                   | 105               |
| 22 | Design Principles for 3d Electron Transfer in a Ga-Based Garnet To Enable High-Performance Reversible<br>Thermochromic Material Color Maps. Chemistry of Materials, 2019, 31, 1048-1056.                                  | 6.7                    | 15                |
| 23 | Thermal stable blue pigment with tunable color of DyIn1-xMnxO3 (0≤≤0.1). Dyes and Pigments, 2018,<br>156, 192-198.                                                                                                        | 3.7                    | 4                 |
| 24 | Design and synthesis of metal hydroxide three-dimensional inorganic cationic frameworks. Dalton<br>Transactions, 2018, 47, 3339-3345.                                                                                     | 3.3                    | 1                 |
| 25 | Hydrothermal synthesis and magnetic properties of SmCr0.5M0.5O3(M=Fe and Mn) micro-plates.<br>Chemical Research in Chinese Universities, 2018, 34, 1-7.                                                                   | 2.6                    | 7                 |
| 26 | In-situ optical and structural insight of reversible thermochromic materials of Sm3-xBixFe5O12 (x= 0,) Tj ETQq0 0                                                                                                         | 0 <sub>3</sub> rgBT /C | Verlock 10 T      |
| 27 | A facile and green synthesis of MIL-100(Fe) with high-yield and its catalytic performance. New Journal of Chemistry, 2017, 41, 13504-13509.                                                                               | 2.8                    | 63                |
| 28 | Size-dependent optical and thermochromic properties of<br>Sm <sub>3</sub> Fe <sub>5</sub> O <sub>12</sub> . RSC Advances, 2017, 7, 37765-37770.                                                                           | 3.6                    | 17                |
| 29 | Nd3â^'xAExFe5O12: Hydrothermal synthesis, structure and magnetic properties. Chemical Research in Chinese Universities, 2017, 33, 869-875.                                                                                | 2.6                    | 5                 |
| 30 | Iron-containing MIL-101(Cr) as highly active and stable heterogeneous catalysts for the benzylation of aromatics with benzyl chloride. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 345-357.                   | 1.7                    | 5                 |
| 31 | Crystal Shape Tailoring in Perovskite Structure Rare-Earth Ferrites REFeO <sub>3</sub> (RE = La, Pr, Sm,) Tj ETQq<br>Design, 2016, 16, 6522-6530.                                                                         | 1 1 0.784<br>3.0       | 314 rgBT /O<br>46 |
| 32 | Programmable Structure Control in Cigarlike TiO <sub>2</sub> Nanofibers and UV-Light<br>Photocatalysis Performance of Resultant Fabrics. Industrial & Engineering Chemistry Research,<br>2016, 55, 8292-8298.             | 3.7                    | 5                 |
| 33 | Improved energy conversion efficiency of ZnO/polythiophene solar cell in Ga-doped ZnO nanorod<br>array photoanode. Chemical Research in Chinese Universities, 2016, 32, 979-984.                                          | 2.6                    | 0                 |
| 34 | Structure, optical spectroscopy properties and thermochromism of<br>Sm <sub>3</sub> Fe <sub>5</sub> O <sub>12</sub> garnets. Journal of Materials Chemistry C, 2016, 4,<br>10529-10537.                                   | 5.5                    | 32                |
| 35 | Physicochemical Characterization and Evaluation of a Microemulsion System for Gamma-Linolenic<br>Acid Methyl Ester. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry,<br>2016, 46, 725-729. | 0.6                    | 0                 |
| 36 | TiO <sub>2</sub> Nanoflakes as Anode Material for Lithium Ion Batteries. Synthesis and Reactivity in                                                                                                                      | 0.6                    | 3                 |

TiO<sub>2</sub> Nanoflakes as Anode Material for Lithium Ion Batteries. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 1480-1484. 36

Changmin Hou

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Preparation, characterization and electrical properties of Ca and Sr doped LaCrO3. Inorganic Chemistry Communication, 2016, 66, 33-35.                                                                                 | 3.9 | 30        |
| 38 | Porous carbon-coated cobalt sulfide nanocomposites derived from metal organic frameworks (MOFs)<br>as an advanced oxygen reduction electrocatalyst. New Journal of Chemistry, 2016, 40, 1679-1684.                     | 2.8 | 43        |
| 39 | Fabrication of TiO <sub>2</sub> /WO <sub>3</sub> Composite Nanofibers by Electrospinning and<br>Photocatalystic Performance of the Resultant Fabrics. Industrial & Engineering Chemistry<br>Research, 2016, 55, 80-85. | 3.7 | 33        |
| 40 | Study of the Fabrication and Characterization of Porous Ni Using Polystyrene Sphere Template.<br>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 286-290.                    | 0.6 | 2         |
| 41 | Capacitive Behavior of Single Gallium Oxide Nanobelt. Materials, 2015, 8, 5313-5320.                                                                                                                                   | 2.9 | 5         |
| 42 | Preparation of TiO2 nanoflakes and their influence on lithium ion battery storage performance.<br>Chemical Research in Chinese Universities, 2015, 31, 332-336.                                                        | 2.6 | 2         |
| 43 | Preparation and Photocatalytic Property of Nickel-Doped Titanium Dioxide Nanotubes. Synthesis and<br>Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 1576-1579.                            | 0.6 | 5         |
| 44 | Preparation and Characterization of Single-Crystal Silica Nanotubes. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 770-772.                                                | 0.6 | 2         |
| 45 | One-step preparation of N-doped graphene/Co nanocomposite as an advanced oxygen reduction electrocatalyst. Electrochimica Acta, 2015, 176, 280-284.                                                                    | 5.2 | 33        |
| 46 | Fabrication of TiO <sub>2</sub> hollow nanocrystals through the nanoscale Kirkendall effect for lithium-ion batteries and photocatalysis. New Journal of Chemistry, 2015, 39, 3145-3149.                               | 2.8 | 18        |
| 47 | Low temperature hydrothermal synthesis, structure and magnetic properties of RECrO <sub>3</sub><br>(RE = La, Pr, Nd, Sm). Dalton Transactions, 2015, 44, 17201-17208.                                                  | 3.3 | 42        |
| 48 | Electrophysiological measurement at Erb's point during the early stage of Guillain-Barré syndrome.<br>Journal of Clinical Neuroscience, 2014, 21, 786-789.                                                             | 1.5 | 7         |
| 49 | The effect of NH <sub>4</sub> <sup>+</sup> on shape modulation of<br>La <sub>1â^'x</sub> Sr <sub>x</sub> MnO <sub>3</sub> crystals in a hydrothermal environment.<br>CrystEngComm, 2014, 16, 9842-9846.                | 2.6 | 16        |
| 50 | Investigating the interaction of dye molecules with graphene oxide by using a surface plasmon resonance technique. RSC Advances, 2014, 4, 50789-50794.                                                                 | 3.6 | 18        |
| 51 | Electrochromic response of pulsed laser deposition prepared<br>WO <sub>3</sub> –TiO <sub>2</sub> composite film. RSC Advances, 2014, 4, 47670-47676.                                                                   | 3.6 | 22        |
| 52 | Crystal facet control of LaFeO3, LaCrO3, and La0.75Sr0.25MnO3. CrystEngComm, 2014, 16, 2874.                                                                                                                           | 2.6 | 25        |
| 53 | Hydrothermal synthesis and magnetic properties of REFe0.5Cr0.5O3 (RE = La, Tb, Ho, Er, Yb, Lu and Y) perovskite. New Journal of Chemistry, 2014, 38, 1168.                                                             | 2.8 | 39        |
| 54 | Novel Cigarlike TiO <sub>2</sub> Nanofibers: Fabrication, Improved Mechanical, and Electrochemical Performances. ACS Applied Materials & amp; Interfaces, 2013, 5, 2278-2282.                                          | 8.0 | 23        |

Changmin Hou

| #  | Article                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of organic solvents on particle size of Mn3O4 nanoparticles synthesized by a solvothermal method. Journal of Solid State Chemistry, 2013, 202, 57-60.         | 2.9 | 34        |
| 56 | Preparation and property analysis of a heat-resistant and anti-eroding coating. Procedia Engineering, 2012, 27, 1228-1232.                                           | 1.2 | 3         |
| 57 | Three oxidation states and atomic-scale p–n junctions in manganese perovskite oxide from<br>hydrothermal systems. Journal of Materials Science, 2008, 43, 2131-2137. | 3.7 | 14        |
| 58 | One-Pot Redox Syntheses of Heteronanostructures of Ag Nanoparticles on MoO3Nanofibers. Journal of Physical Chemistry B, 2006, 110, 5845-5848.                        | 2.6 | 23        |
| 59 |                                                                                                                                                                      |     |           |