
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6160875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology, 2016, 34, 828-837.	9.4	2,802
2	Mass spectral molecular networking of living microbial colonies. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1743-52.	3.3	804
3	Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. Journal of Bacteriology, 1989, 171, 2689-2696.	1.0	370
4	Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16169-16174.	3.3	272
5	MS/MS networking guided analysis of molecule and gene cluster families. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2611-20.	3.3	250
6	A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Molecular Microbiology, 1999, 31, 1149-1159.	1.2	223
7	Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 559-564.	3.3	219
8	c-Jun Is Essential for Organization of the Epidermal Leading Edge. Developmental Cell, 2003, 4, 865-877.	3.1	208
9	Assembly of a nucleus-like structure during viral replication in bacteria. Science, 2017, 355, 194-197.	6.0	207
10	Microbial metabolic exchange—the chemotype-to-phenotype link. Nature Chemical Biology, 2012, 8, 26-35.	3.9	199
11	Use of immunofluorescence to visualize cell-specific gene expression during sporulation in Bacillus subtilis. Journal of Bacteriology, 1995, 177, 3386-3393.	1.0	181
12	Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of <i>Bacillus subtilis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16286-16290.	3.3	179
13	Localization of Protein Implicated in Establishment of Cell Type to Sites of Asymmetric Division. Science, 1995, 270, 637-640.	6.0	177
14	Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy. Molecular Microbiology, 1995, 18, 459-470.	1.2	149
15	Primer on Agar-Based Microbial Imaging Mass Spectrometry. Journal of Bacteriology, 2012, 194, 6023-6028.	1.0	133
16	Expanding the Diversity of Mycobacteriophages: Insights into Genome Architecture and Evolution. PLoS ONE, 2011, 6, e16329.	1.1	133
17	Holin triggering in real time. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 798-803.	3.3	130
18	Cellular Architecture Mediates DivIVA Ultrastructure and Regulates Min Activity in Bacillus subtilis. MBio, 2011, 2, .	1.8	126

#	Article	lF	CITATIONS
19	Localization of the Escherichia coli cell division protein Ftsl (PBP3) to the division site and cell pole. Molecular Microbiology, 1997, 25, 671-681.	1.2	118
20	<i>Bacillus subtilis</i> MinC destabilizes FtsZ-rings at new cell poles and contributes to the timing of cell division. Genes and Development, 2008, 22, 3475-3488.	2.7	114
21	Disappearance of the sigma E transcription factor from the forespore and the SpollE phosphatase from the mother cell contributes to establishment of cell-specific gene expression during sporulation in Bacillus subtilis. Journal of Bacteriology, 1997, 179, 3331-3341.	1.0	111
22	Peptidoglycan transformations during <i><scp>B</scp>acillus subtilis</i> sporulation. Molecular Microbiology, 2013, 88, 673-686.	1.2	109
23	Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiology (United Kingdom), 2011, 157, 2485-2492.	0.7	108
24	A cytoskeleton-like role for the bacterial cell wall during engulfment of the Bacillus subtilis forespore. Genes and Development, 2002, 16, 3253-3264.	2.7	106
25	Divergent stalling sequences sense and control cellular physiology. Biochemical and Biophysical Research Communications, 2010, 393, 1-5.	1.0	101
26	The <i>Bacillus subtilis</i> cannibalism toxin SDP collapses the proton motive force and induces autolysis. Molecular Microbiology, 2012, 84, 486-500.	1.2	101
27	Genetic and molecular characterization of the Escherichia coli secD operon and its products. Journal of Bacteriology, 1994, 176, 804-814.	1.0	93
28	Zipper-like interaction between proteins in adjacent daughter cells mediates protein localization. Genes and Development, 2004, 18, 2916-2928.	2.7	93
29	Sequence-directed DNA export guides chromosome translocation during sporulation in Bacillus subtilis. Nature Structural and Molecular Biology, 2008, 15, 485-493.	3.6	91
30	A ribosome–nascent chain sensor of membrane protein biogenesis in Bacillus subtilis. EMBO Journal, 2009, 28, 3461-3475.	3.5	87
31	Forespore Engulfment Mediated by a Ratchet-Like Mechanism. Cell, 2006, 126, 917-928.	13.5	84
32	Role of Cell-Specific SpoIIIE Assembly in Polarity of DNA Transfer. Science, 2002, 295, 137-139.	6.0	79
33	Septation, dephosphorylation, and the activation of sigma F during sporulation in Bacillus subtilis. Genes and Development, 1999, 13, 1156-1167.	2.7	78
34	Cell wall synthesis is necessary for membrane dynamics during sporulation of <i>Bacillus subtilis</i> . Molecular Microbiology, 2010, 76, 956-970.	1.2	68
35	MS/MS-based networking and peptidogenomics guided genome mining revealed the stenothricin gene cluster in Streptomyces roseosporus. Journal of Antibiotics, 2014, 67, 99-104.	1.0	64
36	Bacterial Cytological Profiling (BCP) as a Rapid and Accurate Antimicrobial Susceptibility Testing Method for Staphylococcus aureus. EBioMedicine, 2016, 4, 95-103.	2.7	64

#	Article	IF	CITATIONS
37	SpollB Localizes to Active Sites of Septal Biogenesis and Spatially Regulates Septal Thinning during Engulfment in Bacillus subtilis. Journal of Bacteriology, 2000, 182, 1096-1108.	1.0	63
38	Viral Capsid Trafficking along Treadmilling Tubulin Filaments in Bacteria. Cell, 2019, 177, 1771-1780.e12.	13.5	62
39	Evidence that the SpollIE DNA translocase participates in membrane fusion during cytokinesis and engulfment. Molecular Microbiology, 2006, 59, 1097-1113.	1.2	60
40	Dynamic SpoIIIE assembly mediates septal membrane fission during <i>Bacillus subtilis</i> sporulation. Genes and Development, 2010, 24, 1160-1172.	2.7	60
41	Recruitment of a species-specific translational arrest module to monitor different cellular processes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6073-6078.	3.3	57
42	Phosphorylation of spore coat proteins by a family of atypical protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3482-91.	3.3	56
43	Septal localization of forespore membrane proteins during engulfment in Bacillus subtilis. EMBO Journal, 2004, 23, 1636-1646.	3.5	53
44	Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage <scp>G</scp> iles. Molecular Microbiology, 2013, 88, 577-589.	1.2	53
45	Rapid Inhibition Profiling in <i>Bacillus subtilis</i> to Identify the Mechanism of Action of New Antimicrobials. ACS Chemical Biology, 2016, 11, 2222-2231.	1.6	53
46	Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis. Journal of Antibiotics, 2016, 69, 353-361.	1.0	52
47	Isolation and Characterization of a Psychropiezophilic Alphaproteobacterium. Applied and Environmental Microbiology, 2011, 77, 8145-8153.	1.4	50
48	Bacterial–fungal interactions revealed by genome-wide analysis of bacterial mutant fitness. Nature Microbiology, 2021, 6, 87-102.	5.9	49
49	Cellâ€specific SpoIIIE assembly and DNA translocation polarity are dictated by chromosome orientation. Molecular Microbiology, 2007, 66, 1066-1079.	1.2	48
50	Expression and secretion of the cloned Pseudomonas aeruginosa exotoxin A by Escherichia coli. Journal of Bacteriology, 1988, 170, 714-719.	1.0	47
51	Phenylthiazole Antibacterial Agents Targeting Cell Wall Synthesis Exhibit Potent Activity in Vitro and in Vivo against Vancomycin-Resistant Enterococci. Journal of Medicinal Chemistry, 2017, 60, 2425-2438.	2.9	46
52	Arylthiazole antibiotics targeting intracellular methicillin-resistant Staphylococcus aureus (MRSA) that interfere with bacterial cell wall synthesis. European Journal of Medicinal Chemistry, 2017, 139, 665-673.	2.6	46
53	Shaping an Endospore: Architectural Transformations During <i>Bacillus subtilis</i> Sporulation. Annual Review of Microbiology, 2020, 74, 361-386.	2.9	46
54	A Dispensable Role for Forespore-Specific Gene Expression in Engulfment of the Forespore during Sporulation ofBacillus subtilis. Journal of Bacteriology, 2000, 182, 2919-2927.	1.0	45

#	Article	IF	CITATIONS
55	SpolID-Mediated Peptidoglycan Degradation Is Required throughout Engulfment during <i>Bacillus subtilis</i> Sporulation. Journal of Bacteriology, 2010, 192, 3174-3186.	1.0	43
56	The E1β and E2 Subunits of the Bacillus subtilis Pyruvate Dehydrogenase Complex Are Involved in Regulation of Sporulation. Journal of Bacteriology, 2002, 184, 2780-2788.	1.0	42
57	Engulfment-regulated proteolysis of SpollQ: evidence that dual checkpoints control σK activity. Molecular Microbiology, 2005, 58, 102-115.	1.2	42
58	Chromosome Translocation Inflates Bacillus Forespores and Impacts Cellular Morphology. Cell, 2018, 172, 758-770.e14.	13.5	42
59	Cell-wall remodeling drives engulfment during Bacillus subtilis sporulation. ELife, 2016, 5, .	2.8	42
60	Characterization of Pseudomonas aeruginosa mutants with altered piliation. Journal of Bacteriology, 1987, 169, 5663-5667.	1.0	41
61	Visualization of pinholin lesions in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2054-63.	3.3	41
62	Bacillithiol: a key protective thiol in <i>Staphylococcusaureus</i> . Expert Review of Anti-Infective Therapy, 2015, 13, 1089-1107.	2.0	41
63	Dual localization pathways for the engulfment proteins during Bacillus subtilis sporulation. Molecular Microbiology, 2007, 65, 1534-1546.	1.2	40
64	Bacteriological profiling of diphenylureas as a novel class of antibiotics against methicillin-resistant Staphylococcus aureus. PLoS ONE, 2017, 12, e0182821.	1.1	39
65	The Membrane Domain of SpoIIIE Is Required for Membrane Fusion during Bacillus subtilis Sporulation. Journal of Bacteriology, 2003, 185, 2005-2008.	1.0	38
66	Localization of Translocation Complex Components in Bacillus subtilis: Enrichment of the Signal Recognition Particle Receptor at Early Sporulation Septa. Journal of Bacteriology, 2005, 187, 5000-5002.	1.0	38
67	Visualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum. ELife, 2015, 4, e06474.	2.8	34
68	The molecular architecture of engulfment during Bacillus subtilis sporulation. ELife, 2019, 8, .	2.8	34
69	MinCD-dependent regulation of the polarity of SpoIIIE assembly and DNA transfer. EMBO Journal, 2002, 21, 6267-6274.	3.5	33
70	Impact of a Transposon Insertion in <i>phzF2</i> on the Specialized Metabolite Production and Interkingdom Interactions of Pseudomonas aeruginosa. Journal of Bacteriology, 2014, 196, 1683-1693.	1.0	33
71	Partitioning of Chromosomal DNA during Establishment of Cellular Asymmetry in Bacillus subtilis. Journal of Bacteriology, 2002, 184, 1743-1749.	1.0	28
72	Aberrant Cell Division and Random FtsZ Ring Positioning in <i>Escherichia coli cpxA</i> * Mutants. Journal of Bacteriology, 1998, 180, 3486-3490.	1.0	28

#	Article	IF	CITATIONS
73	Impact of Membrane Fusion and Proteolysis on SpollQ Dynamics and Interaction with SpollIAH. Journal of Biological Chemistry, 2007, 282, 2576-2586.	1.6	25
74	Asymmetric localization of the cell division machinery during Bacillus subtilis sporulation. ELife, 2021, 10, .	2.8	24
75	Chromosome segregation in Eubacteria. Current Opinion in Microbiology, 2003, 6, 586-593.	2.3	23
76	Bistable Forespore Engulfment in Bacillus subtilis by a Zipper Mechanism in Absence of the Cell Wall. PLoS Computational Biology, 2014, 10, e1003912.	1,5	20
77	Transposon Assisted Gene Insertion Technology (TAGIT): A Tool for Generating Fluorescent Fusion Proteins. PLoS ONE, 2010, 5, e8731.	1.1	18
78	The <scp>SpoIIQ</scp> landmark protein has different requirements for septal localization and immobilization. Molecular Microbiology, 2013, 89, 1053-1068.	1.2	18
79	SCH79797 improves outcomes in experimental bacterial pneumonia by boosting neutrophil killing and direct antibiotic activity. Journal of Antimicrobial Chemotherapy, 2018, 73, 1586-1594.	1.3	18
80	Subcellular organization of viral particles during maturation of nucleus-forming jumbo phage. Science Advances, 2022, 8, eabj9670.	4.7	18
81	Purification and characterization of the Staphylococcus aureus bacillithiol transferase BstA. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2851-2861.	1.1	17
82	Automated Quantitative Live Cell Fluorescence Microscopy. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000455-a000455.	2.3	16
83	Group A Streptococcal S Protein Utilizes Red Blood Cells as Immune Camouflage and Is a Critical Determinant for Immune Evasion. Cell Reports, 2019, 29, 2979-2989.e15.	2.9	16
84	Suppression of Engulfment Defects in Bacillus subtilis by Elevated Expression of the Motility Regulon. Journal of Bacteriology, 2006, 188, 1159-1164.	1.0	14
85	Antimicrobials from a feline commensal bacterium inhibit skin infection by drug-resistant S. pseudintermedius. ELife, 2021, 10, .	2.8	14
86	Reticulons Regulate the ER Inheritance Block during ER Stress. Developmental Cell, 2016, 37, 279-288.	3.1	13
87	Metabolic differentiation and intercellular nurturing underpin bacterial endospore formation. Science Advances, 2021, 7, .	4.7	13
88	Spatiotemporally regulated proteolysis to dissect the role of vegetative proteins during <i>Bacillus subtilis</i> sporulation: cellâ€specific requirement of Ïf ^H and Ïf ^A . Molecular Microbiology, 2018, 108, 45-62.	1.2	12
89	Mutations that eliminate the requirement for the vertex protein in bacteriophage T4 capsid assembly. Journal of Molecular Biology, 1992, 224, 601-611.	2.0	11
90	Rapid Inhibition Profiling Identifies a Keystone Target in the Nucleotide Biosynthesis Pathway. ACS Chemical Biology, 2018, 13, 3251-3258.	1.6	11

#	Article	IF	CITATIONS
91	Fatty acidâ€releasing activities in <scp><i>S</i></scp> <i>inorhizobium meliloti</i> include unusual diacylglycerol lipase. Environmental Microbiology, 2015, 17, 3391-3406.	1.8	10
92	Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis. PLoS ONE, 2018, 13, e0192977.	1.1	8
93	Bacterial Cytological Profiling Identifies Rhodanine-Containing PAINS Analogs as Specific Inhibitors of <i>Escherichia coli</i> Thymidylate Kinase <i>In Vivo</i> . Journal of Bacteriology, 2021, 203, e0010521.	1.0	6
94	Isolation and characterization of Streptomyces bacteriophages and Streptomyces strains encoding biosynthetic arsenals. PLoS ONE, 2022, 17, e0262354.	1.1	5
95	The Dynamic Architecture of the Bacillus Cell. , 2014, , 13-20.		3
96	Super-resolution microscopy reveals mechanistic details of bacterial cell division. Microscopy and Microanalysis, 2012, 18, 672-673.	0.2	0
97	In Vivo Assembly and Arrangement of the DNA Translocase SpoIIIE During Chromosome Segregation and Membrane Fission in B. Subtilis. Biophysical Journal, 2014, 106, 226a.	0.2	0
98	Chromosome Translocation Inflates <i>Bacillus subtilis</i> Forespores and Impacts Cellular Morphology. SSRN Electronic Journal, 0, , .	0.4	0