Clare McArthur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6160450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risk of predation and disease transmission at artificial water stations. Wildlife Research, 2022, , .	0.7	2
2	A systematic review of factors affecting wildlife survival during rehabilitation and release. PLoS ONE, 2022, 17, e0265514.	1.1	19
3	A Possible Link between the Environment and Cryptococcus gattii Nasal Colonisation in Koalas (Phascolarctos cinereus) in the Liverpool Plains, New South Wales. International Journal of Environmental Research and Public Health, 2022, 19, 4603.	1.2	2
4	The Olfactory Landscape Concept: A Key Source of Past, Present, and Future Information Driving Animal Movement and Decision-making. BioScience, 2022, 72, 745-752.	2.2	11
5	Olfactory misinformation: creating "fake news―to reduce problem foraging by wildlife. Frontiers in Ecology and the Environment, 2022, 20, 531-538.	1.9	5
6	Validation of an Enzyme Immunoassay to Measure Faecal Glucocorticoid Metabolites in Common Brushtail Possums (Trichosurus vulpecula) to Evaluate Responses to Rehabilitation. Animals, 2022, 12, 1627.	1.0	5
7	Habitat fragmentation affects movement and space use of a specialist folivore, the koala. Animal Conservation, 2021, 24, 26-37.	1.5	21
8	Testing transgenerational transfer of personality in managed wildlife populations: a house mouse control experiment. Ecological Applications, 2021, 31, e02247.	1.8	3
9	Catch me if you can: personality drives technique-specific biases during live-capture trapping. Wildlife Research, 2021, 48, 713-721.	0.7	3
10	Comparison of three methods of estimating the population size of an arboreal mammal in a fragmented rural landscape. Wildlife Research, 2021, 48, 105.	0.7	8
11	Animal personality drives individual dietary specialisation across multiple dimensions in a mammalian herbivore. Functional Ecology, 2021, 35, 2253-2265.	1.7	10
12	Behavioural drivers of survey bias: interactive effects of personality, the perceived risk and device properties. Oecologia, 2021, 197, 117-127.	0.9	6
13	Space use by animals on the urban fringe: interactive effects of sex and personality. Behavioral Ecology, 2020, 31, 330-339.	1.0	27
14	Leveraging Motivations, Personality, and Sensory Cues for Vertebrate Pest Management. Trends in Ecology and Evolution, 2020, 35, 990-1000.	4.2	39
15	Linking animal personality to problem-solving performance in urban common brushtail possums. Animal Behaviour, 2020, 162, 35-45.	0.8	25
16	The power of odour cues in shaping fine-scale search patterns of foraging mammalian herbivores. Biology Letters, 2020, 16, 20200329.	1.0	11
17	Petrol exhaust pollution impairs honey bee learning and memory. Oikos, 2019, 128, 264-273.	1.2	18
18	Acute exposure to urban air pollution impairs olfactory learning and memory in honeybees. Ecotoxicology, 2019, 28, 1056-1062.	1.1	24

#	Article	IF	CITATIONS
19	Plant volatiles are a salient cue for foraging mammals: elephants target preferred plants despite background plant odour. Animal Behaviour, 2019, 155, 199-216.	0.8	24
20	Needing a drink: Rainfall and temperature drive the use of free water by a threatened arboreal folivore. PLoS ONE, 2019, 14, e0216964.	1.1	24
21	Habitat complexity does not affect arthropod community composition in roadside greenspaces. Urban Forestry and Urban Greening, 2018, 30, 108-114.	2.3	4
22	Foxes in trees: a threat for Australian arboreal fauna?. Australian Mammalogy, 2018, 40, 103.	0.7	12
23	Visit, consume and quit: Patch quality affects the three stages of foraging. Journal of Animal Ecology, 2018, 87, 1615-1626.	1.3	20
24	Urbanisation and wing asymmetry in the western honey bee (<i>Apis mellifera</i> , Linnaeus 1758) at multiple scales. PeerJ, 2018, 6, e5940.	0.9	11
25	Leaf odour cues enable nonâ€random foraging by mammalian herbivores. Journal of Animal Ecology, 2017, 86, 1317-1328.	1.3	22
26	Olfactory and visual plant cues as drivers of selective herbivory. Oikos, 2017, 126, .	1.2	25
27	Follow your nose: leaf odour as an important foraging cue for mammalian herbivores. Oecologia, 2016, 182, 643-651.	0.9	28
28	Exposure to wind alters insect herbivore behaviour in larvae of <scp><i>U</i></scp> <i>raba lugens</i> (<scp>L</scp> epidoptera: <scp>N</scp> olidae). Austral Entomology, 2016, 55, 242-246.	0.8	8
29	It is safe to go out on a limb: withinâ€ŧree leaf age and location do not alter predation risk for insect herbivores. Austral Entomology, 2016, 55, 284-290.	0.8	6
30	Effective field-based methods to quantify personality in brushtail possums (Trichosurus vulpecula). Wildlife Research, 2016, 43, 332.	0.7	15
31	Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban Forestry and Urban Greening, 2016, 20, 249-253.	2.3	188
32	A multistressor, multitrait approach to assessing the effects of wind and dust on <i>Eucalyptus tereticornis</i> . American Journal of Botany, 2016, 103, 1466-1471.	0.8	1
33	Interactions between fire and introduced deer herbivory on coastal heath vegetation. Austral Ecology, 2016, 41, 604-612.	0.7	6
34	Head capsule stacking by caterpillars: morphology complements behaviour to provide a novel defence. PeerJ, 2016, 4, e1714.	0.9	1
35	Associational refuge in practice: can existing vegetation facilitate woodland restoration?. Oikos, 2015, 124, 571-580.	1.2	19
36	Herbivore search behaviour drives associational plant refuge. Acta Oecologica, 2015, 67, 1-7.	0.5	15

#	Article	IF	CITATIONS
37	Personality affects the foraging response of a mammalian herbivore to the dual costs of food and fear. Oecologia, 2015, 177, 293-303.	0.9	49
38	Elevated volatile concentrations in highâ€nutrient plants: do insect herbivores pay a high price for good food?. Ecological Entomology, 2014, 39, 480-491.	1.1	21
39	Do we ditch digestive physiology in explaining the classic relationship between herbivore body size diet and diet quality?. Functional Ecology, 2014, 28, 1059-1060.	1.7	10
40	The dilemma of foraging herbivores: dealing with food and fear. Oecologia, 2014, 176, 677-689.	0.9	91
41	Roles of the volatile terpene, 1,8-cineole, in plant–herbivore interactions: a foraging odor cue as well as a toxin?. Oecologia, 2014, 174, 827-837.	0.9	39
42	Relationships between native small mammals and native and introduced large herbivores. Austral Ecology, 2014, 39, 236-243.	0.7	14
43	Negotiating multiple cues of predation risk in a landscape of fear: what scares freeâ€ranging brushtail possums?. Journal of Zoology, 2014, 294, 22-30.	0.8	35
44	Determining predator identity from attack marks left in model caterpillars: guidelines for best practice. Entomologia Experimentalis Et Applicata, 2014, 152, 120-126.	0.7	145
45	Dealing with your past: experience of failed predation suppresses caterpillar feeding behaviour. Animal Behaviour, 2014, 90, 337-343.	0.8	7
46	Quantifying the response of free-ranging mammalian herbivores to the interplay between plant defense and nutrient concentrations. Oecologia, 2014, 175, 1167-1177.	0.9	17
47	A practical guide to avoid giving up on giving-up densities. Behavioral Ecology and Sociobiology, 2013, 67, 1541-1553.	0.6	114
48	Fire and grazing influence food resources of an endangered rock-wallaby. Wildlife Research, 2012, 39, 436.	0.7	14
49	Mixing nutrients mitigates the intake constraints of a plant toxin in a generalist herbivore. Behavioral Ecology, 2012, 23, 879-888.	1.0	25
50	Influences of Plant Toxins and Their Spatial Distribution on Foraging by the Common Brushtail Possum, a Generalist Mammalian Herbivore. Journal of Chemical Ecology, 2012, 38, 1544-1551.	0.9	1
51	Natural selection for anti-herbivore plant secondary metabolites. , 2012, , 10-33.		5
52	The foraging tightrope between predation risk and plant toxins: a matter of concentration. Functional Ecology, 2012, 26, 74-83.	1.7	36
53	Behavioural responses to indirect and direct predator cues by a mammalian herbivore, the common brushtail possum. Behavioral Ecology and Sociobiology, 2012, 66, 47-55.	0.6	51
54	Field screening for genetic-based susceptibility to mammalian browsing. Forest Ecology and Management, 2011, 262, 1500-1506.	1.4	6

#	Article	IF	CITATIONS
55	Global patterns of leaf mechanical properties. Ecology Letters, 2011, 14, 301-312.	3.0	418
56	Titrating the cost of plant toxins against predators: determining the tipping point for foraging herbivores. Journal of Animal Ecology, 2011, 80, 753-760.	1.3	31
57	Predation risk and competitive interactions affect foraging of an endangered refugeâ€dependent herbivore. Animal Conservation, 2011, 14, 447-457.	1.5	12
58	Repellent and stocking guards reduce mammal browsing in eucalypt plantations. New Forests, 2011, 42, 301-316.	0.7	8
59	Multiple scales of diet selection by brush-tailed rock-wallabies (Petrogale penicillata). Australian Mammalogy, 2011, 33, 169.	0.7	9
60	Integrating the costs of plant toxins and predation risk in foraging decisions of a mammalian herbivore. Oecologia, 2010, 164, 349-356.	0.9	23
61	Influences of seedling size, container type and mammal browsing on the establishment of Eucalyptus globulus in plantation forestry. New Forests, 2010, 39, 105-115.	0.7	29
62	Early ontogenetic trajectories vary among defence chemicals in seedlings of a fastâ€growing eucalypt. Austral Ecology, 2010, 35, 157-166.	0.7	14
63	Wind Affects Morphology, Function, and Chemistry of Eucalypt Tree Seedlings. International Journal of Plant Sciences, 2010, 171, 73-80.	0.6	18
64	Modelling nutritional interactions: from individuals to communities. Trends in Ecology and Evolution, 2010, 25, 53-60.	4.2	111
65	Spatial scale and opportunities for choice influence browsing and associational refuges of focal plants. Journal of Animal Ecology, 2009, 78, 1134-1142.	1.3	26
66	Non-lethal strategies to reduce browse damage in eucalypt plantations. Forest Ecology and Management, 2009, 259, 45-55.	1.4	14
67	Do bare-nosed wombat (Vombatus ursinus) mounds influence terrestrial macroinvertebrate assemblages in agricultural riparian zones?. Australian Journal of Zoology, 2009, 57, 329.	0.6	2
68	Links between riparian characteristics and the abundance of common wombat (Vombatus ursinus) burrows in an agricultural landscape. Wildlife Research, 2008, 35, 760.	0.7	25
69	Effects of within-patch characteristics on the vulnerability of a plant to herbivory. Oikos, 2007, 116, 41-52.	1.2	43
70	Phenolic acclimation to ultraviolet-A irradiation in Eucalyptus nitens seedlings raised across a nutrient environment gradient. Photosynthetica, 2007, 45, 36-42.	0.9	14
71	SPATIAL SCALE OF THE PATCHINESS OF PLANT POISONS: A CRITICAL INFLUENCE ON FORAGING EFFICIENCY. Ecology, 2006, 87, 2236-2243.	1.5	26
72	Characteristics of tree seedlings and neighbouring vegetation have an additive influence on browsing by generalist herbivores. Forest Ecology and Management, 2006, 228, 197-205.	1.4	35

#	Article	IF	CITATIONS
73	Preferences of two mammalian herbivores for tree seedlings and potential cover crops in plantation forestry. Australian Forestry, 2006, 69, 114-121.	0.3	5
74	Distance from cover affects artificial food-patch depletion by macropod herbivores. Wildlife Research, 2006, 33, 565.	0.7	10
75	How does ontogeny in a Eucalyptus species affect patterns of herbivory by Brushtail Possums?. Functional Ecology, 2006, 20, 982-988.	1.7	38
76	Behavioral Responses of a Generalist Mammalian Folivore to the Physiological Constraints of a Chemically Defended Diet. Journal of Chemical Ecology, 2006, 32, 1133-1147.	0.9	24
77	Sideroxylonal in Eucalyptus foliage influences foraging behaviour of an arboreal folivore. Oecologia, 2006, 147, 272-279.	0.9	42
78	Diet switching in a generalist mammalian folivore: fundamental to maximising intake. Oecologia, 2006, 147, 650-657.	0.9	58
79	How do soil nutrients affect within-plant patterns of herbivory in seedlings of Eucalyptus nitens?. Oecologia, 2006, 150, 409-420.	0.9	31
80	Interactions between herbivores, vegetation and eucalypt tree seedlings in a plantation forestry environment. Australian Forestry, 2005, 68, 281-290.	0.3	4
81	Differential distribution of leaf chemistry in eucalypt seedlings due to variation in whole-plant nutrient availability. Phytochemistry, 2005, 66, 215-221.	1.4	24
82	Foraging in a risky environment: a comparison of Bennett's wallabies Macropus rufogriseus rufogriseus (Marsupialia: Macropodidae) and red-bellied pademelons Thylogale billiardierii (Marsupialia: Macropodidae) in open habitats. Austral Ecology, 2005, 30, 756-764.	0.7	25
83	Comparison of habitat selection by two sympatric macropods, Thylogale billardierii and Macropus rufogriseus rufogriseus, in a patchy eucalypt-forestry environment. Austral Ecology, 2005, 30, 674-683.	0.7	50
84	Effects of nutrient variability on the genetic-based resistance of Eucalyptus globulus to a mammalian herbivore and on plant defensive chemistry. Oecologia, 2005, 142, 597-605.	0.9	50
85	Inheritance Of Resistance to Mammalian Herbivores and of Plant Defensive Chemistry in an Eucalyptus Species. Journal of Chemical Ecology, 2005, 31, 357-375.	0.9	22
86	Inheritance Of Resistance To Mammalian Herbivores and Of Plant Defensive Chemistry In A Eucalyptus Species. Journal of Chemical Ecology, 2005, 31, 519-537.	0.9	11
87	Linking plant genotype, plant defensive chemistry and mammal browsing in a Eucalyptus species. Functional Ecology, 2004, 18, 677-684.	1.7	92
88	Evaluating effects of nursery and post-planting nutrient regimes on leaf chemistry and browsing of eucalypt seedlings in plantations. Forest Ecology and Management, 2004, 200, 101-112.	1.4	27
89	Effect of seedling characteristics at planting on browsing of <i>Eucalyptus globulus </i> by rabbits. Australian Forestry, 2004, 67, 25-29.	0.3	7
90	Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum. Journal of Chemical Ecology, 2003, 29, 1447-1464.	0.9	87

#	Article	IF	CITATIONS
91	Influence of patch characteristics on browsing of tree seedlings by mammalian herbivores. Journal of Applied Ecology, 2003, 40, 458-469.	1.9	56
92	Nursery conditions affect seedling chemistry, morphology and herbivore preferences for Eucalyptus nitens. Forest Ecology and Management, 2003, 176, 585-594.	1.4	19
93	Identifying factors related to the severity of mammalian browsing damage in eucalypt plantations. Forest Ecology and Management, 2003, 183, 239-247.	1.4	27
94	PHOTOINHIBITION: A LINK BETWEEN EFFECTS OF THE ENVIRONMENT ON EUCALYPT LEAF CHEMISTRY AND HERBIVORY. Ecology, 2003, 84, 2952-2966.	1.5	62
95	Diet and diet selection of two species in the macropodid browser–grazer continuum— do they eat what they 'should'?. Australian Journal of Zoology, 2002, 50, 183.	0.6	52
96	Possum browsing—the downside to a eucalypt hybrid developed for frost tolerance in plantation forestry. Forest Ecology and Management, 2002, 157, 231-245.	1.4	21
97	Genetic variation in resistance of Eucalyptus globulus to marsupial browsers. Oecologia, 2002, 130, 289-296.	0.9	57
98	Rethinking the role of many plant phenolics - protection from photodamage not herbivores?. Oikos, 2002, 99, 166-172.	1.2	411
99	Evaluation of line-transect sampling to estimate nocturnal densities of macropods in open and closed habitats. Wildlife Research, 2001, 28, 9.	0.7	17
100	Changes in marsupial herbivore densities in relation to a forestry 1080-poisoning operation. Australian Forestry, 2001, 64, 175-180.	0.3	7
101	Observer error in counts of macropod scats. Wildlife Research, 2000, 27, 277.	0.7	28
102	Damage to and intake of plantation seedlings by captive European rabbits (<i>Oryctolagus) Tj ETQq0 0 0 rgBT /C</i>	overlgck 10	0 tf 50 302 t
103	Spatial distribution of browsing damage and mammalian herbivores in Tasmanian eucalypt plantations. Australian Forestry, 2000, 63, 27-33.	0.3	11
104	Preferences, selection and damage to seedlings under changing availability by two marsupial herbivores. Forest Ecology and Management, 2000, 139, 157-173.	1.4	46
105	An experimental field study of the effects of mammalian herbivore damage on Eucalyptus nitens seedlings. Forest Ecology and Management, 1999, 113, 241-249.	1.4	59
106	Salivary proline-rich proteins in mammals: Roles in oral homeostasis and counteracting dietary tannin. Journal of Chemical Ecology, 1995, 21, 663-691.	0.9	102
107	The effects and costs of allelochemicals for mammalian herbivores: an ecological perspective. , 1994, , 370-391.		52
			·

#	Article	IF	CITATIONS
109	Predicting Digestible Protein and Digestible Dry Matter in Tannin-Containing Forages Consumed by Ruminants. Ecology, 1992, 73, 537-541.	1.5	139
110	Tannin Chemistry in Relation to Digestion. Journal of Range Management, 1992, 45, 57.	0.3	245
111	Variation in Mammalian Physiological Responses to a Condensed Tannin and Its Ecological Implications. Journal of Mammalogy, 1991, 72, 480-486.	0.6	216
112	Effects of tannins on digestion in the common ringtail possum (<i>Pseudocheirus peregrinus</i>), a specialized marsupial folivore. Journal of Zoology, 1991, 225, 233-251.	0.8	26
113	Tooth wear in eastern grey kangaroos (<i>Macropus giganteus</i>) and western grey kangaroos (<i>Macropus fuliginosus</i>), and its potential influence on diet selection, digestion and population parameters. Journal of Zoology, 1988, 215, 491-504.	0.8	45
114	Variation in Neutral Detergent Fiber Analysis of Tannin-Rich Foliage. Journal of Wildlife Management, 1988, 52, 374.	0.7	8