Dmitry A Fishman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/616025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nature Photonics, 2014, 8, 650-656.	31.4	220
2	Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption. Nature Photonics, 2011, 5, 561-565.	31.4	118
3	Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide. Optica, 2014, 1, 436.	9.3	117
4	Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force Microscopy. Accounts of Chemical Research, 2015, 48, 2671-2679.	15.6	100
5	CdS/ZnS core–shell nanocrystal photosensitizers for visible to UV upconversion. Chemical Science, 2017, 8, 5488-5496.	7.4	98
6	Gradient and scattering forces in photoinduced force microscopy. Physical Review B, 2014, 90, .	3.2	96
7	Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited]. Optics Express, 2011, 19, 22951.	3.4	92
8	Direct Observation of Amorphous Precursor Phases in the Nucleation of Protein–Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 1433-1442.	13.7	79
9	Ultrafast pump-probe force microscopy with nanoscale resolution. Applied Physics Letters, 2015, 106, .	3.3	72
10	Tertiary Alcohols as Radical Precursors for the Introduction of Tertiary Substituents into Heteroarenes. ACS Catalysis, 2019, 9, 3413-3418.	11.2	72
11	Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements. Optical Materials Express, 2012, 2, 1776.	3.0	64
12	Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core–Shell Nanocrystals. ACS Nano, 2020, 14, 5061-5074.	14.6	64
13	Two-photon absorption spectra of a near-infrared 2-azaazulene polymethine dye: solvation and ground-state symmetry breaking. Physical Chemistry Chemical Physics, 2013, 15, 7666.	2.8	53
14	Ultraviolet and yellow reflectance but not fluorescence is important for visual discrimination of conspecifics by <i>Heliconius erato</i> . Journal of Experimental Biology, 2017, 220, 1267-1276.	1.7	47
15	Anthracene Diphosphate Ligands for CdSe Quantum Dots; Molecular Design for Efficient Upconversion. Chemistry of Materials, 2020, 32, 1461-1466.	6.7	46
16	Enhanced Intersystem Crossing Rate in Polymethine-Like Molecules: Sulfur-Containing Squaraines versus Oxygen-Containing Analogues. Journal of Physical Chemistry A, 2013, 117, 2333-2346.	2.5	44
17	Ultrafast Coherent Raman Scattering at Plasmonic Nanojunctions. Journal of Physical Chemistry C, 2016, 120, 20943-20953.	3.1	42
18	Complementary Lockâ€andâ€Key Ligand Binding of a Triplet Transmitter to a Nanocrystal Photosensitizer. Angewandte Chemie - International Edition, 2017, 56, 5598-5602.	13.8	37

DMITRY A FISHMAN

#	Article	IF	CITATIONS
19	Phonon-Magnon Interaction in Low Dimensional Quantum Magnets Observed by Dynamic Heat Transport Measurements. Physical Review Letters, 2013, 110, 147206.	7.8	32
20	ZnS Shells Enhance Triplet Energy Transfer from CdSe Nanocrystals for Photon Upconversion. ACS Photonics, 2018, 5, 3089-3096.	6.6	31
21	Infrared chemical imaging through non-degenerate two-photon absorption in silicon-based cameras. Light: Science and Applications, 2020, 9, 125.	16.6	29
22	Two-Photon Absorption Spectrum of a Single Crystal Cyanine-like Dye. Journal of Physical Chemistry Letters, 2012, 3, 1222-1228.	4.6	27
23	Temporal, spectral, and polarization dependence of the nonlinear optical response of carbon disulfide: erratum. Optica, 2016, 3, 657.	9.3	22
24	The Hippo pathway kinases LATS1 and LATS2 attenuate cellular responses to heavy metals through phosphorylating MTF1. Nature Cell Biology, 2022, 24, 74-87.	10.3	22
25	Competing pathways in the near-UV photochemistry of acetaldehyde. Physical Chemistry Chemical Physics, 2017, 19, 14276-14288.	2.8	21
26	Energy and spectral enhancement of femtosecond supercontinuum in a noble gas using a weak seed. Optics Express, 2011, 19, 757.	3.4	17
27	Photothermal Nanoparticle Initiation Enables Radical Polymerization and Yields Unique, Uniform Microfibers with Broad Spectrum Light. ACS Applied Materials & Interfaces, 2017, 9, 39034-39039.	8.0	17
28	On the size-dependence of CdSe nanocrystals for photon upconversion with anthracene. Journal of Chemical Physics, 2020, 153, 114702.	3.0	15
29	Photodissociation dynamics of acetone studied by time-resolved ion imaging and photofragment excitation spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 2457-2469.	2.8	14
30	Optimization of the Double Pump–Probe Technique: Decoupling the Triplet Yield and Cross Section. Journal of Physical Chemistry A, 2012, 116, 4833-4841.	2.5	12
31	Facile All-Optical Method for In Situ Detection of Low Amounts of Ammonia. IScience, 2020, 23, 101757.	4.1	12
32	Primary amines enhance triplet energy transfer from both the band edge and trap state from CdSe nanocrystals. Journal of Chemical Physics, 2019, 151, 174701.	3.0	10
33	Rapid chemically selective 3D imaging in the mid-infrared. Optica, 2021, 8, 995.	9.3	10
34	Magneto-absorption spectra of hydrogen-like yellow exciton series in cuprous oxide: excitons in strong magnetic fields. Scientific Reports, 2018, 8, 7818.	3.3	9
35	Magneto-excitons in Cu ₂ O: theoretical model from weak to high magnetic fields. New Journal of Physics, 2019, 21, 103012.	2.9	9
36	Nanoscale Excitation Dynamics of Carbon Nanotubes Probed with Photoinduced Force Microscopy. Journal of Physical Chemistry C, 2020, 124, 11694-11700.	3.1	8

DMITRY A FISHMAN

#	Article	IF	CITATIONS
37	CdSe nanocrystal sensitized photon upconverting film. RSC Advances, 2021, 11, 31042-31046.	3.6	7
38	High-speed 2D and 3D mid-IR imaging with an InGaAs camera. APL Photonics, 2021, 6, 096108.	5.7	5
39	Affinity-Guided Design of Caveolin-1 Ligands for Deoligomerization. Journal of Medicinal Chemistry, 2016, 59, 4019-4025.	6.4	3
40	Nanoscale investigation of two-photon polymerized microstructures with tip-enhanced Raman spectroscopy. JPhys Photonics, 2021, 3, 024001.	4.6	3
41	Human Î ³ S-Crystallin Resists Unfolding Despite Extensive Chemical Modification from Exposure to Ionizing Radiation. Journal of Physical Chemistry B, 2022, 126, 679-690.	2.6	3
42	Pulsed and CW IR Detection in Wide-gap Semiconductors using Extremely Nondegenerate Two-photon Absorption. , 2013, , .		2
43	Two-photon emission in direct-gap semiconductors. , 2011, , .		1
44	IR detection in wide-gap semiconductors using extreme nondegenerate two-photon absorption. , 2012, , .		1
45	Directed evolution and biophysical characterization of a full-length, soluble, human caveolin-1 variant. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 963-972.	2.3	1
46	CW IR Detection in Wide-gap Semiconductors Using Extremely Nondegenerate Two-photon Absorption. , 2013, , .		1
47	Ultrafast pump-probe photo-induced force microscopy at nanoscale. , 2015, , .		1
48	Seeded Supercontinuum Generation in Gases and Condensed Matter. , 2011, , .		0
49	Extremely nondegenerate two-photon detection of sub-bandgap pulses. , 2011, , .		0
50	Extremely nondegenerate 2-photon processes for Mid-IR detectors and sources. , 2014, , .		0
51	Extremely Nondegenerate 2-Photon Processes for Detection and Gain. , 2014, , .		0
52	Protocol for rapid ammonia detection via surface-enhanced Raman spectroscopy. STAR Protocols, 2021, 2, 100599.	1.2	0
53	Two-photon Absorption Spectra of a Near-IR Polymethine Molecule with a Broken Ground-State Symmetry. , 2011, , .		0

4

#	Article	IF	CITATIONS
55	Extremely Nondegenerate Two-Photon Absorption and Detection in Direct Gap Semiconductors. , 2011, , .		0
56	Measuring small solute nonlinearities in solution by dual-arm Z-Scan technique. , 2012, , .		0
57	Dual-Arm Z-scan for measuring nonlinearities of solutes in solution. , 2012, , .		Ο
58	Extremely Non-Degenerate Two-Photon Emission in Direct-Gap Semiconductors. , 2012, , .		0
59	Measurement of Nonlinear Refraction Dynamics of CS2. , 2014, , .		Ο