Huanli Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/615997/publications.pdf

Version: 2024-02-01

		159358	182168
51	3,089 citations	30	51
papers	citations	h-index	g-index
55	55	55	4412
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cetuximab–Polymersome–Mertansine Nanodrug for Potent and Targeted Therapy of EGFR-Positive Cancers. Biomacromolecules, 2022, 23, 100-111.	2.6	12
2	CD38-Directed Vincristine Nanotherapy for Acute Lymphoblastic Leukemia. Biomacromolecules, 2022, 23, 377-387.	2.6	2
3	Daratumumab Immunopolymersomeâ€Enabled Safe and CD38â€Targeted Chemotherapy and Depletion of Multiple Myeloma. Advanced Materials, 2021, 33, e2007787.	11.1	25
4	An intelligent cell-selective polymersome-DM1 nanotoxin toward triple negative breast cancer. Journal of Controlled Release, 2021, 340, 331-341.	4.8	19
5	CD44-Targeted Multifunctional Nanomedicines Based on a Single-Component Hyaluronic Acid Conjugate with All-Natural Precursors: Construction and Treatment of Metastatic Breast Tumors <i>in Vivo</i> . Biomacromolecules, 2020, 21, 104-113.	2.6	23
6	100th Anniversary of Macromolecular Science Viewpoint: Biological Stimuli-Sensitive Polymer Prodrugs and Nanoparticles for Tumor-Specific Drug Delivery. ACS Macro Letters, 2020, 9, 1292-1302.	2.3	31
7	Self-assembly of paramagnetic amphiphilic copolymers for synergistic therapy. Journal of Materials Chemistry B, 2020, 8, 6866-6876.	2.9	14
8	Cellular Targeting of Bispecific Antibody-Functionalized Poly(ethylene glycol) Capsules: Do Shape and Size Matter?. ACS Applied Materials & Size Matter?.	4.0	18
9	Cancer Nanomedicines Based on Synthetic Polypeptides. Biomacromolecules, 2019, 20, 4299-4311.	2.6	27
10	HER2-Specific Reduction-Sensitive Immunopolymersomes with High Loading of Epirubicin for Targeted Treatment of Ovarian Tumor. Biomacromolecules, 2019, 20, 3855-3863.	2.6	13
11	cRGD-decorated biodegradable polytyrosine nanoparticles for robust encapsulation and targeted delivery of doxorubicin to colorectal cancer in vivo. Journal of Controlled Release, 2019, 301, 110-118.	4.8	75
12	Dually Active Targeting Nanomedicines Based on a Direct Conjugate of Two Purely Natural Ligands for Potent Chemotherapy of Ovarian Tumors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 46548-46557.	4.0	24
13	Biomacromolecules for Emerging Biological and Medical Science and Technology. Biomacromolecules, 2019, 20, 4241-4242.	2.6	2
14	Smart Polymersomes Dually Functionalized with cRGD and Fusogenic GALA Peptides Enable Specific and High-Efficiency Cytosolic Delivery of Apoptotic Proteins. Biomacromolecules, 2019, 20, 184-191.	2.6	37
15	Polytyrosine nanoparticles enable ultra-high loading of doxorubicin and rapid enzyme-responsive drug release. Biomaterials Science, 2018, 6, 1526-1534.	2.6	51
16	Lipopepsomes: A novel and robust family of nano-vesicles capable of highly efficient encapsulation and tumor-targeted delivery of doxorubicin hydrochloride in vivo. Journal of Controlled Release, 2018, 272, 107-113.	4.8	43
17	Integrated Multifunctional Micelles Coâ€Selfâ€Assembled from Polypeptides Conjugated with Natural Ferulic Acid and Lipoic Acid for Doxorubicin Delivery. ChemPhysChem, 2018, 19, 2070-2077.	1.0	14
18	Hyaluronic Acid-Shelled Disulfide-Cross-Linked Nanopolymersomes for Ultrahigh-Efficiency Reactive Encapsulation and CD44-Targeted Delivery of Mertansine Toxin. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1597-1604.	4.0	45

#	Article	IF	CITATIONS
19	Cyclic RGD-Peptide-Functionalized Polylipopeptide Micelles for Enhanced Loading and Targeted Delivery of Monomethyl Auristatin E. Molecular Pharmaceutics, 2018, 15, 4854-4861.	2.3	16
20	Small-Sized and Robust Chimaeric Lipopepsomes: A Simple and Functional Platform with High Protein Loading for Targeted Intracellular Delivery of Protein Toxin in Vivo. Chemistry of Materials, 2018, 30, 6831-6838.	3.2	35
21	Peptide-decorated polymeric nanomedicines for precision cancer therapy. Journal of Controlled Release, 2018, 290, 11-27.	4.8	63
22	Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Advanced Drug Delivery Reviews, 2018, 132, 16-32.	6.6	92
23	Construction of Small-Sized, Robust, and Reduction-Responsive Polypeptide Micelles for High Loading and Targeted Delivery of Chemotherapeutics. Biomacromolecules, 2018, 19, 3586-3593.	2.6	37
24	Polymers from Nature and for Nature. Biomacromolecules, 2018, 19, 1697-1700.	2.6	11
25	Targeted glioma chemotherapy by cyclic RGD peptide-functionalized reversibly core-crosslinked multifunctional poly(ethylene glycol)-b-poly(Îμ-caprolactone) micelles. Acta Biomaterialia, 2017, 50, 396-406.	4.1	97
26	Tuning the Properties of Polymer Capsules for Cellular Interactions. Bioconjugate Chemistry, 2017, 28, 1859-1866.	1.8	20
27	Hyaluronic acid coated PLGA nanoparticulate docetaxel effectively targets and suppresses orthotopic human lung cancer. Journal of Controlled Release, 2017, 259, 76-82.	4.8	84
28	$\hat{l}\pm\nu\hat{l}^2$ 3 Integrin-targeted reduction-sensitive micellar mertansine prodrug: Superb drug loading, enhanced stability, and effective inhibition of melanoma growth in vivo. Journal of Controlled Release, 2017, 259, 176-186.	4.8	26
29	Templated Polymer Replica Nanoparticles to Facilitate Assessment of Material-Dependent Pharmacokinetics and Biodistribution. ACS Applied Materials & Interfaces, 2017, 9, 33683-33694.	4.0	18
30	Glutathione-Sensitive Hyaluronic Acid-Mercaptopurine Prodrug Linked via Carbonyl Vinyl Sulfide: A Robust and CD44-Targeted Nanomedicine for Leukemia. Biomacromolecules, 2017, 18, 3207-3214.	2.6	50
31	Biodegradable Micelles Based on Poly(ethylene glycol)-b-polylipopeptide Copolymer: A Robust and Versatile Nanoplatform for Anticancer Drug Delivery. ACS Applied Materials & Delivery. 1017, 9, 27587-27595.	4.0	34
32	cRGD-installed docetaxel-loaded mertansine prodrug micelles: redox-triggered ratiometric dual drug release and targeted synergistic treatment of B16F10 melanoma. Nanotechnology, 2017, 28, 295103.	1.3	24
33	Engineered Metal-Phenolic Capsules Show Tunable Targeted Delivery to Cancer Cells. Biomacromolecules, 2016, 17, 2268-2276.	2.6	89
34	Analysing intracellular deformation of polymer capsules using structured illumination microscopy. Nanoscale, 2016, 8, 11924-11931.	2.8	33
35	Boronate–Phenolic Network Capsules with Dual Response to Acidic pH and <i>cis</i> â€Diols. Advanced Healthcare Materials, 2015, 4, 1796-1801.	3.9	60
36	pH-Responsive Capsules Engineered from Metal-Phenolic Networks for Anticancer Drug Delivery. Small, 2015, 11, 2032-2036.	5.2	216

#	Article	IF	CITATIONS
37	Enzymatically and Reductively Degradable α-Amino Acid-Based Poly(ester amide)s: Synthesis, Cell Compatibility, and Intracellular Anticancer Drug Delivery. Biomacromolecules, 2015, 16, 597-605.	2.6	51
38	The role of capsule stiffness on cellular processing. Chemical Science, 2015, 6, 3505-3514.	3.7	109
39	Reductively degradable α-amino acid-based poly(ester amide)-graft-galactose copolymers: facile synthesis, self-assembly, and hepatoma-targeting doxorubicin delivery. Biomaterials Science, 2015, 3, 1134-1146.	2.6	22
40	Targeting Ability of Affibody-Functionalized Particles Is Enhanced by Albumin but Inhibited by Serum Coronas. ACS Macro Letters, 2015, 4, 1259-1263.	2.3	44
41	Structure Governs the Deformability of Polymer Particles in a Microfluidic Blood Capillary Model. ACS Macro Letters, 2015, 4, 1205-1209.	2.3	28
42	Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis. Acta Biomaterialia, 2014, 10, 2159-2168.	4.1	75
43	Reduction-Responsive Polymeric Micelles and Vesicles for Triggered Intracellular Drug Release. Antioxidants and Redox Signaling, 2014, 21, 755-767.	2.5	64
44	Reduction-sensitive degradable micellar nanoparticles as smart and intuitive delivery systems for cancer chemotherapy. Expert Opinion on Drug Delivery, 2013, 10, 1109-1122.	2.4	68
45	Galactose-Decorated Reduction-Sensitive Degradable Chimaeric Polymersomes as a Multifunctional Nanocarrier To Efficiently Chaperone Apoptotic Proteins into Hepatoma Cells. Biomacromolecules, 2013, 14, 2873-2882.	2.6	65
46	Ligand-Directed Reduction-Sensitive Shell-Sheddable Biodegradable Micelles Actively Deliver Doxorubicin into the Nuclei of Target Cancer Cells. Biomacromolecules, 2013, 14, 3723-3730.	2.6	116
47	Precise control of intracellular drug release and anti-tumor activity of biodegradable micellar drugs via reduction-sensitive shell-shedding. Soft Matter, 2012, 8, 3949.	1.2	67
48	Reduction-responsive shell-sheddable biodegradable micelles for intracellular doxorubicin delivery. Journal of Controlled Release, 2011, 152, e84-e85.	4.8	1
49	α-Amino Acid Containing Degradable Polymers as Functional Biomaterials: Rational Design, Synthetic Pathway, and Biomedical Applications. Biomacromolecules, 2011, 12, 1937-1955.	2.6	182
50	Shell-Sheddable Micelles Based on Dextran-SS-Poly($\hat{l}\mu$ -caprolactone) Diblock Copolymer for Efficient Intracellular Release of Doxorubicin. Biomacromolecules, 2010, 11, 848-854.	2.6	303
51	Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials, 2009, 30, 6358-6366.	5.7	414