
Aaron D Boes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6159731/publications.pdf Version: 2024-02-01

AADON D ROFS

#	Article	IF	CITATIONS
1	Network localization of neurological symptoms from focal brain lesions. Brain, 2015, 138, 3061-3075.	3.7	364
2	A human brain network derived from coma-causing brainstem lesions. Neurology, 2016, 87, 2427-2434.	1.5	187
3	Right ventromedial prefrontal cortex: a neuroanatomical correlate of impulse control in boys. Social Cognitive and Affective Neuroscience, 2009, 4, 1-9.	1.5	131
4	Rostral Anterior Cingulate Cortex Volume Correlates with Depressed Mood in Normal Healthy Children. Biological Psychiatry, 2008, 63, 391-397.	0.7	127
5	Network localization of hemichorea-hemiballismus. Neurology, 2016, 86, 2187-2195.	1.5	121
6	Right anterior cingulate: A neuroanatomical correlate of aggression and defiance in boys Behavioral Neuroscience, 2008, 122, 677-684.	0.6	80
7	Amygdala volume correlates positively with fearfulness in normal healthy girls. Social Cognitive and Affective Neuroscience, 2010, 5, 424-431.	1.5	72
8	Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain Stimulation, 2018, 11, 575-581.	0.7	66
9	Brain lesions disrupting addiction map to a common human brain circuit. Nature Medicine, 2022, 28, 1249-1255.	15.2	61
10	Pediatric postoperative cerebellar cognitive affective syndrome follows outflow pathway lesions. Neurology, 2019, 93, e1561-e1571.	1.5	55
11	Noninvasive Brain Stimulation in Pediatric Attention-Deficit Hyperactivity Disorder (ADHD). Journal of Child Neurology, 2016, 31, 784-796.	0.7	53
12	Noninvasive Brain Stimulation: Challenges and Opportunities for a New Clinical Specialty. Journal of Neuropsychiatry and Clinical Neurosciences, 2018, 30, 173-179.	0.9	53
13	Reliability of targeting methods in TMS for depression: Beam F3 vs. 5.5 cm. Brain Stimulation, 2020, 13, 578-581.	0.7	51
14	Social function in boys with cleft lip and palate: Relationship to ventral frontal cortex morphology. Behavioural Brain Research, 2007, 181, 224-231.	1.2	47
15	Bridging the Great Divide: What Can Neurology Learn From Psychiatry?. Journal of Neuropsychiatry and Clinical Neurosciences, 2018, 30, 271-278.	0.9	45
16	Post-stroke outcomes predicted from multivariate lesion-behaviour and lesion network mapping. Brain, 2022, 145, 1338-1353.	3.7	45
17	Machine Learning Methods Predict Individual Upper-Limb Motor Impairment Following Therapy in Chronic Stroke. Neurorehabilitation and Neural Repair, 2020, 34, 428-439.	1.4	43
18	Cognitive impairment after focal brain lesions is better predicted by damage to structural than functional network hubs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	42

AARON D BOES

#	Article	IF	CITATIONS
19	Hyperactivity, impulsivity, and inattention in boys with cleft lip and palate: relationship to ventromedial prefrontal cortex morphology. Journal of Neurodevelopmental Disorders, 2010, 2, 235-242.	1.5	39
20	Canceled connections: Lesion-derived network mapping helps explain differences in performance on a complex decision-making task. Cortex, 2016, 78, 31-43.	1.1	38
21	Behavioral effects of congenital ventromedial prefrontal cortex malformation. BMC Neurology, 2011, 11, 151.	0.8	35
22	Thalamic strokes that severely impair arousal extend into the brainstem. Annals of Neurology, 2018, 84, 926-930.	2.8	33
23	Connectivity of sleep- and wake-promoting regions of the human hypothalamus observed during resting wakefulness. Sleep, 2018, 41, .	0.6	33
24	Multivariate Lesion-Behavior Mapping of General Cognitive Ability and Its Psychometric Constituents. Journal of Neuroscience, 2020, 40, 8924-8937.	1.7	29
25	Lesion network mapping demonstrates that mindâ€wandering is associated with the default mode network. Journal of Neuroscience Research, 2021, 99, 361-373.	1.3	29
26	Functional connectome reorganization relates to post-stroke motor recovery and structural and functional disconnection. NeuroImage, 2021, 245, 118642.	2.1	29
27	Cerebellar Theta Frequency Transcranial Pulsed Stimulation Increases Frontal Theta Oscillations in Patients with Schizophrenia. Cerebellum, 2019, 18, 489-499.	1.4	28
28	Lesion Localization of Poststroke Lateropulsion. Stroke, 2019, 50, 1067-1073.	1.0	27
29	Lesion network mapping: where do we go from here?. Brain, 2021, 144, e5-e5.	3.7	25
30	Network Localization of Executive Function Deficits in Patients with Focal Thalamic Lesions. Journal of Cognitive Neuroscience, 2020, 32, 2303-2319.	1.1	23
31	Right inferior longitudinal fasciculus lesions disrupt visual-emotional integration. Social Cognitive and Affective Neuroscience, 2016, 11, 945-951.	1.5	22
32	Neuropsychological evidence of multi-domain network hubs in the human thalamus. ELife, 2021, 10, .	2.8	21
33	Changes in cortical morphology resulting from long-term amygdala damage. Social Cognitive and Affective Neuroscience, 2012, 7, 588-595.	1.5	20
34	Initial Response to Transcranial Magnetic Stimulation Treatment for Depression Predicts Subsequent Response. Journal of Neuropsychiatry and Clinical Neurosciences, 2017, 29, 179-182.	0.9	14
35	H-Coil Repetitive Transcranial Magnetic Stimulation Induced Seizure in an Adult with Major Depression: A Case Report. Brain Stimulation, 2016, 9, 632-633.	0.7	10
36	Psychiatrists' Attitudes Toward Transcranial Magnetic Stimulation. Biological Psychiatry, 2016, 80, e55-e56.	0.7	10

AARON D BOES

#	Article	IF	CITATIONS
37	A Century Searching for the Neurons Necessary for Wakefulness. Frontiers in Neuroscience, 0, 16, .	1.4	9
38	A new device to improve target localization for transcranial magnetic stimulation therapy. Brain Stimulation, 2019, 12, 1600-1602.	0.7	8
39	FreeSurfer is useful for early detection of Rasmussen's encephalitis prior to obvious atrophy. Developmental Medicine and Child Neurology, 2016, 58, 209-210.	1.1	6
40	Persistent uncrossed corticospinal connections in patients with intractable focal epilepsy. Epilepsy and Behavior, 2017, 75, 66-71.	0.9	6
41	Bispectral EEG (BSEEG) to assess arousal after electro-convulsive therapy (ECT). Psychiatry Research, 2020, 285, 112811.	1.7	6
42	Developing Precision Invasive Neuromodulation for Psychiatry. Journal of Neuropsychiatry and Clinical Neurosciences, 2021, 33, 201-209.	0.9	4
43	Lesions in different prefrontal sectors are associated with different types of acquired personality disturbances. Cortex, 2022, 147, 169-184.	1.1	4
44	Rapid eye movement sleep patterns of brain activation and deactivation occur within unique functional networks. Human Brain Mapping, 2020, 41, 3984-3992.	1.9	3
45	Right Tegmental Hemorrhage with Urinary Retention: A Case Report. Case Reports in Neurology, 2022, 14, 68-71.	0.3	2
46	Manipulative and Antisocial Behavior in an 11-Year-Old Boy with Epilepsy. Journal of Developmental and Behavioral Pediatrics, 2012, 33, 365-368.	0.6	1
47	Preserved Cognition After Right Hemispherectomy. Neurology: Clinical Practice, 2021, 11, e906-e908.	0.8	1
48	Posterior Fossa Sub-Arachnoid Cysts Observed in Patients with Bipolar Disorder: a Retrospective Cohort Study. Cerebellum, 2022, , .	1.4	1
49	Reply to "Role of Thalamus in Sleep–Wake Cycle Regulation― Annals of Neurology, 2019, 85, 612-613.	2.8	0