Michal Babiĕ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/615965/publications.pdf

Version: 2024-02-01

36 papers	1,767 citations	18 h-index	330143 37 g-index
37	37	37	3128
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Preparation and properties of magnetic nano- and microsized particles for biological and environmental separations. Journal of Separation Science, 2007, 30, 1751-1772.	2.5	327
2	Poly(<scp> </scp> -lysine)-Modified Iron Oxide Nanoparticles for Stem Cell Labeling. Bioconjugate Chemistry, 2008, 19, 740-750.	3.6	277
3	d-Mannose-Modified Iron Oxide Nanoparticles for Stem Cell Labeling. Bioconjugate Chemistry, 2007, 18, 635-644.	3.6	125
4	An effective strategy of magnetic stem cell delivery for spinal cord injury therapy. Nanoscale, 2015, 7, 3954-3958.	5.6	89
5	Poly(<i>N</i> , <i>N</i> -dimethylacrylamide)-Coated Maghemite Nanoparticles for Stem Cell Labeling. Bioconjugate Chemistry, 2009, 20, 283-294.	3.6	80
6	Human adipose tissueâ€derived mesenchymal stem cells expressing yeast cytosinedeaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma. International Journal of Cancer, 2012, 130, 2455-2463.	5.1	80
7	Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury. International Journal of Nanomedicine, 2012, 7, 3719.	6.7	73
8	Surface coating affects behavior of metallic nanoparticles in a biological environment. Beilstein Journal of Nanotechnology, 2016, 7, 246-262.	2.8	69
9	Oxidative damage to biological macromolecules in human bone marrow mesenchymal stromal cells labeled with various types of iron oxide nanoparticles. Toxicology Letters, 2012, 210, 53-63.	0.8	63
10	Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles. International Journal of Nanomedicine, 2016, 11, 1701.	6.7	57
11	Does surface coating of metallic nanoparticles modulate their interference with in vitro assays?. RSC Advances, 2015, 5, 70787-70807.	3.6	54
12	Effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling. Journal of Magnetism and Magnetic Materials, 2009, 321, 1539-1547.	2.3	53
13	New bioerodable thermoresponsive polymers for possible radiotherapeutic applications. Journal of Controlled Release, 2007, 119, 25-33.	9.9	50
14	Dextran-modified iron oxide nanoparticles. Particuology: Science and Technology of Particles, 2007, 5, 162-168.	0.4	49
15	Automated Tracking of Nanoparticle-labeled Melanoma Cells Improves the Predictive Power of a Brain Metastasis Model. Cancer Research, 2013, 73, 2445-2456.	0.9	49
16	Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles. Beilstein Journal of Nanotechnology, 2016, 7, 926-936.	2.8	29
17	Biological evaluation of surface-modified magnetic nanoparticles as a platform for colon cancer cell theranostics. Colloids and Surfaces B: Biointerfaces, 2018, 161, 35-41.	5.0	28
18	Interaction of poly-L-lysine coating and heparan sulfate proteoglycan on magnetic nanoparticle uptake by tumor cells. International Journal of Nanomedicine, 2018, Volume 13, 1693-1706.	6.7	28

#	Article	IF	CITATIONS
19	The Use of Hydrophilic Poly(<i>N</i> , <i>N</i> -dimethylacrylamide) for Promoting Engulfment of Magnetic Î ³ -Fe ₂ O ₃ Nanoparticles by Mammalian Cells. Journal of Biomedical Nanotechnology, 2013, 9, 479-491.	1.1	19
20	FTIR microspectroscopy revealed biochemical changes in liver and kidneys as a result of exposure to low dose of iron oxide nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118355.	3.9	18
21	D-mannose-Coating of Maghemite Nanoparticles Improved Labeling of Neural Stem Cells and Allowed Their Visualization by <i>ex vivo</i> MRI after Transplantation in the Mouse Brain. Cell Transplantation, 2019, 28, 553-567.	2.5	17
22	The effect of magnetic nanoparticles on neuronal differentiation of induced pluripotent stem cell-derived neural precursors. International Journal of Nanomedicine, 2016, Volume 11, 6267-6281.	6.7	16
23	Biocompatibility assessment of up-and down-converting nanoparticles: implications of interferences with <i>in vitro</i> assays. Methods and Applications in Fluorescence, 2019, 7, 014001.	2.3	16
24	Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated \hat{I}^3 -Fe2O3 nano-sized particles and assessment of their effects on glutamate transport. Beilstein Journal of Nanotechnology, 2014, 5, 778-788.	2.8	15
25	Heat generation of surface-modified magnetic $\langle i \rangle \hat{j}^3 \langle j \rangle$ -Fe $\langle sub \rangle 2 \langle j sub \rangle 0 \langle sub \rangle 3 \langle j sub \rangle$ nanoparticles in applied alternating magnetic field. Journal Physics D: Applied Physics, 2017, 50, 345002.	2.8	14
26	Magnetic poly(glycidyl methacrylate) particles prepared in the presence of surfaceâ€modified γâ€Fe ₂ O ₃ . Journal of Polymer Science Part A, 2009, 47, 4982-4994.	2.3	11
27	Maghemite nanoparticles coated by methacrylamide-based polymer for magnetic particle imaging. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	10
28	Photoacoustic Properties of Polypyrrole Nanoparticles. Nanomaterials, 2021, 11, 2457.	4.1	9
29	Polypyrrole nanoparticles: control of the size and morphology. Journal of Polymer Research, 2020, 27, 1.	2.4	8
30	<i>In vivo</i> monitoring of rat macrophages labeled with poly(<scp>l</scp> â€lysine)â€iron oxide nanoparticles. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1141-1148.	3.4	7
31	Poly(N,N-dimethylacrylamide)-Based Microspheres Prepared by Heterogeneous Polymerizations. Macromolecular Reaction Engineering, 2007, 1, 86-94.	1.5	6
32	Influence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells. Beilstein Journal of Nanotechnology, 2014, 5, 1732-1737.	2.8	6
33	Role of dextran in stabilization of polypyrrole nanoparticles for photoacoustic imaging. European Polymer Journal, 2021, 157, 110634.	5.4	5
34	The use of dopamine-hyaluronate associate-coated maghemite nanoparticles to label cells. International Journal of Nanomedicine, 2012, 7, 1461.	6.7	4
35	Transient coating of \hat{I}^3 -Fe ₂ O ₃ nanoparticles with glutamate for its delivery to and removal from brain nerve terminals. Beilstein Journal of Nanotechnology, 2020, 11, 1381-1393.	2.8	3
36	Intravenously administered <scp>d</scp> -mannitol-coated maghemite nanoparticles cause elemental anomalies in selected rat organs. Metallomics, 2020, 12, 1811-1821.	2.4	2