Jose MarÃ-a Bodoque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6159532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improvement of resilience of urban areas by integrating social perception in flash-flood risk management. Journal of Hydrology, 2016, 541, 665-676.	5.4	116
2	Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain). Geomorphology, 2010, 118, 383-392.	2.6	106
3	Two-dimensional numerical modeling of wood transport. Journal of Hydroinformatics, 2014, 16, 1077-1096.	2.4	105
4	Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modelling. Journal of Hydrology, 2011, 403, 103-115.	5.4	93
5	Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeomorphic palaeostage indicators. Hydrological Processes, 2011, 25, 970-979.	2.6	91
6	Flash-flood impacts cause changes in wood anatomy of Alnus glutinosa, Fraxinus angustifolia and Quercus pyrenaica. Tree Physiology, 2010, 30, 773-781.	3.1	89
7	Changes in Wood Anatomy in Tree Rings of Pinus pinaster Ait. Following Wounding by Flash Floods. Tree-Ring Research, 2010, 66, 93-103.	0.6	87
8	Sheet erosion rates determined by using dendrogeomorphological analysis of exposed tree roots: Two examples from Central Spain. Catena, 2005, 64, 81-102.	5.0	86
9	Twoâ€dimensional modelling of large wood transport during flash floods. Earth Surface Processes and Landforms, 2014, 39, 438-449.	2.5	84
10	Dating and quantification of erosion processes based on exposed roots. Earth-Science Reviews, 2013, 123, 18-34.	9.1	77
11	Large wood transport as significant influence on flood risk in a mountain village. Natural Hazards, 2014, 74, 967-987.	3.4	71
12	Reconstruction of a flash flood with large wood transport and its influence on hazard patterns in an ungauged mountain basin. Hydrological Processes, 2013, 27, 3424-3437.	2.6	68
13	Challenges in paleoflood hydrology applied to risk analysis in mountainous watersheds – A review. Journal of Hydrology, 2015, 529, 449-467.	5.4	61
14	An Integrated Approach to Flood Risk Management: A Case Study of Navaluenga (Central Spain). Water Resources Management, 2013, 27, 3051-3069.	3.9	59
15	POTENTIAL LARGE WOODY DEBRIS RECRUITMENT DUE TO LANDSLIDES, BANK EROSION AND FLOODS IN MOUNTAIN BASINS: A QUANTITATIVE ESTIMATION APPROACH. River Research and Applications, 2014, 30, 81-97.	1.7	59
16	Construction of an integrated social vulnerability index in urban areas prone to flash flooding. Natural Hazards and Earth System Sciences, 2017, 17, 1541-1557.	3.6	56
17	Characterisation of flash floods in small ungauged mountain basins of Central Spain using an integrated approach. Catena, 2013, 110, 32-43.	5.0	55
18	Enhancing flash flood risk perception and awareness of mitigation actions through risk communication: A pre-post survey design. Journal of Hydrology, 2019, 568, 769-779.	5.4	52

Jose MarÃa Bodoque

#	Article	IF	CITATIONS
19	Dendrogeomorphology in badlands: Methods, case studies and prospects. Catena, 2013, 106, 113-122.	5.0	47
20	Measuring medium-term sheet erosion in gullies from trees: A case study using dendrogeomorphological analysis of exposed pine roots in central Iberia. Geomorphology, 2011, 134, 417-425.	2.6	46
21	Assessment of the soil water content in the Pampas region using SWAT. Catena, 2016, 137, 298-309.	5.0	45
22	Response of <i>Pinus sylvestris</i> roots to sheet-erosion exposure: an anatomical approach. Natural Hazards and Earth System Sciences, 2008, 8, 223-231.	3.6	42
23	A quantitative methodology for the assessment of the regional economic vulnerability to flash floods. Journal of Hydrology, 2018, 565, 386-399.	5.4	42
24	Gully evolution and geomorphic adjustments of badlands to reforestation. Scientific Reports, 2017, 7, 45027.	3.3	34
25	How to construct and validate an Integrated Socio-Economic Vulnerability Index: Implementation at regional scale in urban areas prone to flash flooding. Science of the Total Environment, 2020, 746, 140905.	8.0	32
26	Recent flood hazards in Kashmir put into context with millennium-long historical and tree-ring records. Science of the Total Environment, 2020, 722, 137875.	8.0	29
27	Can tree tilting be used for paleoflood discharge estimations?. Journal of Hydrology, 2015, 529, 480-489.	5.4	28
28	Quantifying Soil Erosion from Hiking Trail in a Protected Natural Area in the Spanish Pyrenees. Land Degradation and Development, 2017, 28, 2255-2267.	3.9	28
29	Flood Damage Analysis: First Floor Elevation Uncertainty Resulting from LiDAR-Derived Digital Surface Models. Remote Sensing, 2016, 8, 604.	4.0	26
30	Restoring earth surface processes through landform design. A 13â€year monitoring of a geomorphic reclamation model for quarries on slopes. Earth Surface Processes and Landforms, 2010, 35, 531-548.	2.5	25
31	A review of dendrogeomorphological research applied to flood risk analysis in Spain. Geomorphology, 2013, 196, 211-220.	2.6	24
32	On the Optimal Measuring Area for Pointwise Rainfall Estimation: A Dedicated Experiment with 14 Laser Disdrometers. Journal of Hydrometeorology, 2017, 18, 753-760.	1.9	24
33	Source of error and uncertainty in sheet erosion rates estimated from dendrogeomorphology. Earth Surface Processes and Landforms, 2015, 40, 1146-1157.	2.5	23
34	Hazard Zoning for Landslides Connected to Torrential Floods in the Jerte Valley (Spain) by using GIS Techniques. Natural Hazards, 2003, 30, 361-381.	3.4	21
35	Combining terrestrial laser scanning andÂroot exposure to estimate erosion rates. Plant and Soil, 2015, 394, 127-137.	3.7	20
36	Can the discharge of a hyperconcentrated flow be estimated from paleoflood evidence?. Water Resources Research, 2011, 47, .	4.2	19

Jose MarÃa Bodoque

#	Article	IF	CITATIONS
37	Triggering threshold precipitation and soil hydrological characteristics of shallow landslides in granitic landscapes. Geomorphology, 2011, 133, 178-189.	2.6	17
38	A simple multi-criteria approach to delimitate nitrate attenuation zones in alluvial floodplains. Four cases in south-western Europe. Ecological Engineering, 2017, 103, 315-331.	3.6	17
39	Stakeholder analysis: Mapping the river networks for integrated flood risk management. Environmental Science and Policy, 2021, 124, 506-516.	4.9	15
40	Utilisation des isotopes stables de l'oxygène des cernes d'arbres pour déterminer l'origine des inondations passéesÂ: premiers résultats pour la péninsule ibérique. Quaternaire, 2015, , 67-80.	0.2	15
41	Landform Classification for Land Use Planning in Developed Areas: An Example in Segovia Province (Central Spain). Environmental Management, 2003, 32, 488-498.	2.7	13
42	A new methodological protocol for the use of dendrogeomorphological data in flood risk analysis. Hydrology Research, 2013, 44, 234-247.	2.7	13
43	Improving Flood Maps in Ungauged Fluvial Basins with Dendrogeomorphological Data. An Example from the Caldera de Taburiente National Park (Canary Islands, Spain). Geosciences (Switzerland), 2018, 8, 300.	2.2	13
44	Hydrological Alteration Index as an Indicator of the Calibration Complexity of Water Quantity and Quality Modeling in the Context of Global Change. Water (Switzerland), 2020, 12, 115.	2.7	13
45	Analysing flash flood risk perception through a geostatistical approach in the village of Navaluenga, Central Spain. Journal of Flood Risk Management, 2020, 13, e12590.	3.3	12
46	Civil engineering works versus self-protection measures for the mitigation of floods economic risk. A case study from a new classification criterion for cost-benefit analysis. International Journal of Disaster Risk Reduction, 2019, 37, 101157.	3.9	11
47	An application-oriented protocol for flood frequency analysis based on botanical evidence. Journal of Hydrology, 2020, 590, 125242.	5.4	10
48	Holistic characterization of flash flood vulnerability: Construction and validation of an integrated multidimensional vulnerability index. Journal of Hydrology, 2022, 612, 128083.	5.4	10
49	Large wood in rivers and its influence on flood hazard. Cuadernos De Investigacion Geografica, 2014, 40, 229-246.	1.1	9
50	Recovering hydromorphological functionality to improve natural purification capacity of a highly human-modified wetland. Ecological Engineering, 2017, 103, 332-343.	3.6	7
51	Floodplain capacity to depollute water in relation to the structure of biological communities. Ecological Engineering, 2017, 103, 301-314.	3.6	7
52	Flood Hazard Management in Public Mountain Recreation Areas vs. Ungauged Fluvial Basins. Case Study of the Caldera de Taburiente National Park, Canary Islands (Spain). Geosciences (Switzerland), 2018, 8, 6.	2.2	6
53	Searching for useful non-systematic tree-ring data sources for flood hazard analysis using GIS tools. Catena, 2012, 92, 130-138.	5.0	5
54	Long-term lahar reconstruction in Jamapa Gorge, Pico de Orizaba (Mexico) based on botanical evidence and numerical modelling. Landslides, 2021, 18, 3381-3392.	5.4	3

#	Article	IF	CITATIONS
55	Automated convective and stratiform precipitation estimation in a small mountainous catchment using X-band radar data in Central Spain. Journal of Hydroinformatics, 2017, 19, 315-330.	2.4	1
56	Laboratory and Field Protocol for Estimating Sheet Erosion Rates from Dendrogeomorphology. Journal of Visualized Experiments, 2019, , .	0.3	1
57	Avances en el análisis del material leñoso en rÃos: incorporación, transporte e influencia en el riesgo por inundaciones. Cuaternario Y Geomorfologia, 2015, 29, 7-33.	0.2	1