
Yuxiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6159464/publications.pdf Version: 2024-02-01

YUYIANG L

#	Article	IF	CITATIONS
1	Determining the Role of Polymer Molecular Weight for High-Performance All-Polymer Solar Cells: Its Effect on Polymer Aggregation and Phase Separation. Journal of the American Chemical Society, 2015, 137, 2359-2365.	6.6	347
2	High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. Journal of the American Chemical Society, 2021, 143, 2665-2670.	6.6	245
3	Morphology Control Enables Efficient Ternary Organic Solar Cells. Advanced Materials, 2018, 30, e1803045.	11.1	243
4	Over 17% Efficiency Binary Organic Solar Cells with Photoresponses Reaching 1000 nm Enabled by Selenophene-Fused Nonfullerene Acceptors. ACS Energy Letters, 2021, 6, 9-15.	8.8	141
5	Asymmetric Acceptors Enabling Organic Solar Cells to Achieve an over 17% Efficiency: Conformation Effects on Regulating Molecular Properties and Suppressing Nonradiative Energy Loss. Advanced Energy Materials, 2021, 11, 2003177.	10.2	114
6	Correlation between Phase-Separated Domain Sizes of Active Layer and Photovoltaic Performances in All-Polymer Solar Cells. Macromolecules, 2016, 49, 5051-5058.	2.2	93
7	A Generally Applicable Approach Using Sequential Deposition to Enable Highly Efficient Organic Solar Cells. Small Methods, 2020, 4, 2000687.	4.6	86
8	16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone. Science China Chemistry, 2022, 65, 309-317.	4.2	54
9	Narrowâ€Bandgap Singleâ€Component Polymer Solar Cells with Approaching 9% Efficiency. Advanced Materials, 2021, 33, e2101295.	11.1	53
10	Alkoxybenzothiadiazole-Based Fullerene and Nonfullerene Polymer Solar Cells with High Shunt Resistance for Indoor Photovoltaic Applications. ACS Applied Materials & Interfaces, 2018, 10, 3885-3894.	4.0	52
11	High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor. Science China Chemistry, 2021, 64, 1380-1388.	4.2	51
12	Quinoxaline–thiophene based thick photovoltaic devices with an efficiency of â^¼8%. Journal of Materials Chemistry A, 2016, 4, 9967-9976.	5.2	49
13	Toward Efficient All-Polymer Solar Cells via Halogenation on Polymer Acceptors. ACS Applied Materials & Interfaces, 2020, 12, 33028-33038.	4.0	42
14	Polymerizing small molecular acceptors for efficient allâ€polymer solar cells. InformaÄnÃ-Materiály, 2022, 4, .	8.5	42
15	Straight chain D–A copolymers based on thienothiophene and benzothiadiazole for efficient polymer field effect transistors and photovoltaic cells. Polymer Chemistry, 2016, 7, 4638-4646.	1.9	29
16	Regulating the Aggregation of Unfused Nonâ€Fullerene Acceptors via Molecular Engineering towards Efficient Polymer Solar Cells. ChemSusChem, 2021, 14, 3579-3589.	3.6	28
17	Two Regioisomeric π onjugated Small Molecules: Synthesis, Photophysical, Packing, and Optoelectronic Properties. Advanced Functional Materials, 2017, 27, 1701942.	7.8	27
18	Influence of backbone modification of difluoroquinoxaline-based copolymers on the interchain packing, blend morphology and photovoltaic properties of nonfullerene organic solar cells. Journal of Materials Chemistry C, 2019, 7, 1681-1689.	2.7	25

Yuxiang Li

#	Article	IF	CITATIONS
19	Regioisomeric wide-band-gap polymers with different fluorine topologies for non-fullerene organic solar cells. Polymer Chemistry, 2019, 10, 395-402.	1.9	22
20	Effect of Backbone Fluorine and Chlorine Substitution on Chargeâ€Transport Properties of Naphthalenediimideâ€Based Polymer Semiconductors. Advanced Electronic Materials, 2020, 6, 1901241.	2.6	21
21	Boosting Highly Efficient Hydrocarbon Solvent-Processed All-Polymer-Based Organic Solar Cells by Modulating Thin-Film Morphology. ACS Applied Materials & Interfaces, 2021, 13, 34301-34307.	4.0	20
22	Fine-tuned crystallinity of polymerized non-fullerene acceptor via molecular engineering towards efficient all-polymer solar cell. Chemical Engineering Journal, 2022, 428, 131232.	6.6	20
23	13.4 % Efficiency from Allâ€Smallâ€Molecule Organic Solar Cells Based on a Crystalline Donor with Chlorine and Trialkylsilyl Substitutions. ChemSusChem, 2021, 14, 3535-3543.	3.6	15
24	Side hain Substituents on Benzotriazoleâ€Based Polymer Acceptors Affecting the Performance of Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200062.	2.0	12
25	Synthesis and photovoltaic properties of three different types of terpolymers. Materials Chemistry Frontiers, 2017, 1, 1147-1155.	3.2	6
26	2,1,3â€benzothiadiazoleâ€5,6â€dicarboxylicimide based semicrystalline polymers for photovoltaic cells. Journal of Polymer Science Part A, 2016, 54, 3826-3834.	2.5	5
27	Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains. Science China Chemistry, 2017, 60, 528-536.	4.2	3
28	Thiophene and Naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole Based Alternating Copolymers for Polymer Solar Cells. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 553-559.	0.1	2
29	Fluorination Position: A Study of the Optoelectronic Properties of Two Regioisomers Using Spectroscopic and Computational Techniques, Journal of Physical Chemistry A, 2020, 124, 7685-7691	1.1	2