
Mohammad Reza Dousti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6159204/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Concentration dependent luminescence quenching of Er3+-doped zinc boro-tellurite glass. Journal of Luminescence, 2013, 144, 139-145.	1.5	160
2	Synthesis and characterization of Dy3+ doped zinc–lead-phosphate glass. Optical Materials, 2013, 35, 1103-1108.	1.7	90
3	Structural and optical study of samarium doped lead zinc phosphate glasses. Optics Communications, 2013, 300, 204-209.	1.0	87
4	Effect of AgCl on spectroscopic properties of erbium doped zinc tellurite glass. Journal of Molecular Structure, 2013, 1035, 6-12.	1.8	87
5	Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium–zinc–tellurite glass. Journal of Luminescence, 2013, 143, 368-373.	1.5	83
6	Concentration effect on the spectroscopic behavior of Tb3+ ions in zinc phosphate glasses. Journal of Luminescence, 2015, 165, 77-84.	1.5	82
7	Surface enhanced Raman scattering and plasmon enhanced fluorescence in zinc-tellurite glass. Optics Express, 2013, 21, 14282.	1.7	71
8	Enhanced infrared to visible upconversion emission in Er3+ doped phosphate glass: Role of silver nanoparticles. Journal of Luminescence, 2012, 132, 2714-2718.	1.5	70
9	Enhanced spectroscopic properties and Judd–Ofelt parameters ofÂEr-doped tellurite glass: Effect of gold nanoparticles. Current Applied Physics, 2013, 13, 1813-1818.	1.1	64
10	Spectroscopic investigation and Judd–Ofelt analysis of silver nanoparticles embedded Er3+-doped tellurite glass. Current Applied Physics, 2015, 15, 1-7.	1.1	57
11	Silver nanoparticles enhanced luminescence of Er3+ ions in boro-tellurite glasses. Materials Letters, 2013, 112, 136-138.	1.3	55
12	Concentration dependent luminescence and cross-relaxation energy transfers in Tb3+ doped fluoroborate glasses. Journal of Luminescence, 2019, 205, 282-286.	1.5	54
13	Structural and spectroscopic characteristics of Eu3+-doped tungsten phosphate glasses. Optical Materials, 2015, 45, 185-190.	1.7	53
14	Silver nanoparticles enhanced luminescence of Eu3+-doped tellurite glass. Journal of Luminescence, 2014, 154, 316-321.	1.5	48
15	Enhanced VIS and NIR emissions of Pr3+ ions in TZYN glasses containing silver ions and nanoparticles. Journal of Alloys and Compounds, 2017, 695, 607-612.	2.8	48
16	Up-conversion enhancement in Er3+-Ag co-doped zinc tellurite glass: Effect of heat treatment. Journal of Non-Crystalline Solids, 2012, 358, 2939-2942.	1.5	47
17	Spectroscopic properties of Tb3+-doped lead zinc phosphate glass for green solid state laser. Journal of Non-Crystalline Solids, 2015, 420, 21-25.	1.5	47
18	Plasmonic enhanced luminescence in Er3+:Ag co-doped tellurite glass. Journal of Molecular Structure, 2013, 1033, 79-83.	1.8	46

#	Article	IF	CITATIONS
19	Crystallization, mechanical, and optical properties of transparent, nanocrystalline gahnite glassâ€ceramics. Journal of the American Ceramic Society, 2017, 100, 1963-1975.	1.9	45
20	Enhanced frequency upconversion in Er3+-doped sodium lead tellurite glass containing silver nanoparticles. European Physical Journal D, 2012, 66, 1.	0.6	44
21	Nano-silver enhanced luminescence of Eu3+-doped lead tellurite glass. Journal of Molecular Structure, 2014, 1065-1066, 39-42.	1.8	37
22	Er3+-doped zinc tellurite glasses revisited: Concentration dependent chemical durability, thermal stability and spectroscopic properties. Journal of Non-Crystalline Solids, 2015, 429, 70-78.	1.5	36
23	Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass. Journal of Luminescence, 2013, 136, 145-149.	1.5	35
24	Enhanced upconversion emission of Dy3+-doped tellurite glass by heat-treated silver nanoparticles. Journal of Luminescence, 2014, 154, 218-223.	1.5	35
25	Enhanced green and red upconversion emissions in Er 3+ -doped boro-tellurite glass containing gold nanoparticles. Journal of Molecular Structure, 2015, 1079, 347-352.	1.8	34
26	Efficient infrared-to-visible upconversion emission in Nd ³⁺ -doped PbO-TeO ₂ glass containing silver nanoparticles. Journal of Applied Physics, 2013, 114, 113105.	1.1	32
27	Spectral investigation of Sm3+/Yb3+co-doped sodium tellurite glass. Chinese Optics Letters, 2013, 11, 061605-61608.	1.3	30
28	Optical Investigation of Sm ³⁺ Doped Zinc-Lead-Phosphate Glass. Chinese Physics Letters, 2012, 29, 087304.	1.3	29
29	New fluorophosphate glasses co-doped with Eu3+ and Tb3+ as candidates for generating tunable visible light. Journal of Alloys and Compounds, 2015, 647, 315-321.	2.8	28
30	Photoluminescence study of Sm3+–Yb3+co-doped tellurite glass embedding silver nanoparticles. Journal of Luminescence, 2015, 159, 100-104.	1.5	27
31	Quantum cutting and up-conversion investigations in Pr 3+ /Yb 3+ co-doped oxyfluoro-tellurite glasses. Journal of Non-Crystalline Solids, 2016, 450, 149-155.	1.5	27
32	Luminescence quenching versus enhancement in WO 3 -NaPO 3 glasses doped with trivalent rare earth ions and containing silver nanoparticles. Optical Materials, 2016, 60, 331-340.	1.7	27
33	Optical Investigation of Sm3+ Doped in Phosphate Glass. Glass Physics and Chemistry, 2017, 43, 538-547.	0.2	24
34	Plasmon-Enhanced Upconversion Fluorescence in Er ³⁺ :Ag Phosphate Glass: the Effect of Heat Treatment. Chinese Physics Letters, 2013, 30, 027301.	1.3	19
35	Tungsten sodium phosphate glasses doped with trivalent rare earth ions (Eu3+, Tb3+, Nd3+ and Er3+) for visible and near-infrared applications. Journal of Non-Crystalline Solids, 2020, 530, 119838.	1.5	19
36	Effect of silver nanoparticles on the upconversion and near-infrared emissions of Er 3+ :Yb 3+ co-doped zinc tellurite glasses. Measurement: Journal of the International Measurement Confederation, 2017, 105, 114-119.	2.5	18

#	Article	IF	CITATIONS
37	Enhancement of down- and upconversion intensities in Er3+/Yb3+ co-doped oxyfluoro tellurite glasses induced by Ag species and nanoparticles. Journal of Luminescence, 2017, 192, 250-255.	1.5	18
38	A Model for Enhanced Up-Conversion Luminescence in Erbium-Doped Tellurite Glass Containing Silver Nanoparticles. Advanced Materials Research, 0, 501, 61-65.	0.3	16
39	Enhanced luminescence properties of Nd3+ doped boro-tellurite glasses via silver additive. Optik, 2017, 136, 553-557.	1.4	16
40	Luminescence dynamics in Eu3+ doped fluoroborate glasses. Journal of Luminescence, 2017, 192, 827-831.	1.5	15
41	Plasmonic effect of silver nanoparticles on the upconversion emissions of Sm3+-doped sodium-borosilicate glass. Measurement: Journal of the International Measurement Confederation, 2014, 56, 117-120.	2.5	13
42	Upconversion and 1.53â€ [−] μm near-infrared luminescence study of the Er3+-Yb3+ co-doped novel phosphate glasses. Optik, 2020, 200, 163426.	1.4	13
43	Spectral studies of highly Dy3+ doped PbO–ZnO–B2O3–P2O5 glasses. Journal of Luminescence, 2021, 231, 117839.	1.5	12
44	Eu 3+ and Ce 3+ co-doped aluminosilicate glasses and transparent glass-ceramics containing gahnite nanocrystals. Optical Materials, 2017, 69, 372-377.	1.7	11
45	Calculation of Judd Ofelt parameters: Sm3+ ions doped in zinc magnesium phosphate glasses. Solid State Communications, 2019, 298, 113632.	0.9	11
46	Substrate Temperature Dependent Surface Morphology and Photoluminescence of Germanium Quantum Dots Grown by Radio Frequency Magnetron Sputtering. International Journal of Molecular Sciences, 2012, 13, 12880-12889.	1.8	10
47	Optical and structural investigations of self-assembled Ge/Si bi-layer containing Ge QDs. Journal of Luminescence, 2014, 154, 51-57.	1.5	10
48	Influence of silver nanoparticles on the luminescence dynamics of Dy3+ doped amorphous matrix. Measurement: Journal of the International Measurement Confederation, 2015, 74, 87-91.	2.5	10
49	Structural and Optical Behavior of Germanium Quantum Dots. Chinese Physics Letters, 2012, 29, 118101.	1.3	7
50	Growth of Au Nanoparticles Stimulate Spectroscopic Properties of Er ³⁺ Doped TeO ₂ -ZnO-Na ₂ O Glasses. Advanced Materials Research, 2014, 895, 254-259.	0.3	7
51	Origins of the broadening in 1.5Âμm emission of Er3+-doped glasses. Journal of Molecular Structure, 2015, 1100, 415-420.	1.8	6
52	Structural and optical study of erbium doped borophosphate glasses. Optik, 2020, 206, 163707.	1.4	6
53	Influence of PbF2 content on optical thermometry of Er3+/Yb3+ co-doped tungsten sodium phosphate glasses. Optical Materials, 2021, 112, 110723.	1.7	6
54	Enhanced green emission of terbium-ions-doped phosphate glass embedding metallic nanoparticles. Journal of Nanophotonics, 2015, 9, 093068.	0.4	5

#	Article	IF	CITATIONS
55	Spectroscopic study of Er3+-doped zinc-tellurite glass and opaque glass-ceramic. Solid State Sciences, 2021, 112, 106444.	1.5	5
56	Enhanced 1.06Âμ4m emission in Nd3+-doped lead-tellurite glasses doped with silver nanoparticles. Journal of Nanophotonics, 2016, 10, 046010.	0.4	4
57	The effect of semi-infinite crystalline electrodes on transmission of gold atomic wires using DFT. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 79, 8-12.	1.3	4
58	Enhanced thermometry parameters in Er3+-doped zinc tellurite glasses containing silver nanoparticles. Optik, 2021, 240, 166929.	1.4	4
59	Spectroscopic Investigation of Rare-Earth Doped Phosphate Glasses Containing Silver Nanoparticles. Acta Physica Polonica A, 2013, 123, 746-749.	0.2	2
60	Lanthanide coordination polymers with N-methyliminodipropionic acid: Synthesis, crystal structures and luminescence. Inorganica Chimica Acta, 2017, 462, 308-314.	1.2	2
61	Plasmon enhanced scattering and fluorescence in amorphous matrix. International Journal of Materials Research, 2014, 105, 1136-1139.	0.1	Ο
62	Plasmon Assisted Luminescence in Rare Earth Doped Glasses. International Journal of Behavioral and Consultation Therapy, 2016, , 339-386.	0.4	0
63	Lanthanide-Doped Zinc Oxyfluorotellurite Glasses. , 2018, , 143-177.		Ο
64	Optical Sensing Based on Rare-Earth-Doped Tellurite Glasses. , 2018, , 179-201.		0
65	Effect of silver and antimony on optical properties of tungsten-phosphate glasses. Journal of Luminescence, 2020, 223, 117191.	1.5	Ο
66	Effect of CeO2 and Eu2O3 on the calorimetric behavior of Si–Al–Zn–K–Ti oxide glass. Solid State Sciences, 2020, 107, 106315.	1.5	0
67	Evaluation of the energy performance of refrigeration systems using nanofluids: a systematic and critical review. Revista Principia, 2023, 60, 664.	0.1	Ο